Opto-Electronic Advances, Volume. 8, Issue 5, 240254(2025)
Wearable photonic smart wristband for cardiorespiratory function assessment and biometric identification
[1] A Timmis, TimmisA, VardasP, al TownsendNet, P Vardas, TimmisA, VardasP, al TownsendNet, N Townsend et al. European society of cardiology: cardiovascular disease statistics 2021. Eur Heart J, 43, 716-799(2022).
[2] A Pelliccia, PellicciaA, SharmaS, al GatiSet, S Sharma, PellicciaA, SharmaS, al GatiSet, S Gati et al. 2020 ESC Guidelines on sports cardiology and exercise in patients with cardiovascular disease: the Task Force on sports cardiology and exercise in patients with cardiovascular disease of the European Society of Cardiology (ESC). Eur Heart J, 42, 17-96(2021).
[3] T Lytras, LytrasT, MouratidouE, al AndreopoulouAet, E Mouratidou, LytrasT, MouratidouE, al AndreopoulouAet, A Andreopoulou et al. Effect of early oseltamivir treatment on mortality in critically ill patients with different types of influenza: a multiseason cohort study. Clin Infect Dis, 69, 1896-1902(2019).
[4] A Torres, TorresA, CillonizC, al NiedermanMSet, C Cilloniz, TorresA, CillonizC, al NiedermanMSet, MS Niederman et al. Pneumonia. Nat Rev Dis Primers, 7, 25(2021).
[5] JJ Lee, LeeJJ, SundarKM, KM Sundar. Evaluation and management of adults with obstructive sleep apnea syndrome. Lung, 199, 87-101(2021).
[6] V Fuster. High blood pressure guidelines: welcomed advice, but let’s not lose the patient amid the numbers. J Am Coll Cardiol, 71, 800-801(2018).
[7] XK Zhang, ZhangXK, WangC, al HeDDet, C Wang, ZhangXK, WangC, al HeDDet, DD He et al. Identification of DNA methylation-regulated genes as potential biomarkers for coronary heart disease via machine learning in the Framingham Heart Study. Clin Epigenetics, 14, 122(2022).
[8] J Couzin-Frankel. Anti-inflammatory prevents heart attacks: by vindicating theory, antibody result points to new approaches to protecting the heart. Science, 357, 855(2017).
[9] M Girard, GirardM, DeschampsJ, al RazzaqSet, J Deschamps, GirardM, DeschampsJ, al RazzaqSet, S Razzaq et al. Emerging applications of extracardiac ultrasound in critically ill cardiac patients. Can J Cardiol, 39, 444-457(2023).
[10] M Pujol-López, Pujol-LópezM, R SanAntonio, al MontLet, Antonio R San, Pujol-LópezM, R SanAntonio, al MontLet, L Mont et al. Electrocardiographic optimization techniques in resynchronization therapy. EP Eur, 21, 1286-1296(2019).
[11] J Zhang, ZhangJ, FletcherJG, al HarmsenWSet, JG Fletcher, ZhangJ, FletcherJG, al HarmsenWSet, WS Harmsen et al. Analysis of heart rate and heart rate variation during cardiac CT examinations. Acad Radiol, 15, 40-48(2008).
[12] KY Meng, MengKY, XiaoX, al WeiWXet, X Xiao, MengKY, XiaoX, al WeiWXet, WX Wei et al. Wearable pressure sensors for pulse wave monitoring. Adv Mater, 34, 2109357(2022).
[13] D Mohapatra, MohapatraD, ByunJE, al AnsariMZet, JE Byun, MohapatraD, ByunJE, al AnsariMZet, MZ Ansari et al. Layer engineered MXene empowered wearable pressure sensors for non‐invasive vital human–machine interfacing healthcare monitoring. Adv Mater Technol, 8, 2301175(2023).
[14] KY Meng, MengKY, XiaoX, al LiuZXet, X Xiao, MengKY, XiaoX, al LiuZXet, ZX Liu et al. Kirigami‐inspired pressure sensors for wearable dynamic cardiovascular monitoring. Adv Mater, 34, 2202478(2022).
[15] ZH Xiang, XiangZH, HanMD, ZhangHX, MD Han, XiangZH, HanMD, ZhangHX, HX Zhang. Nanomaterials based flexible devices for monitoring and treatment of cardiovascular diseases (CVDs). Nano Res, 16, 3939-3955(2023).
[16] LY Han, HanLY, LiangWJ, al XieQSet, WJ Liang, HanLY, LiangWJ, al XieQSet, QS Xie et al. Health monitoring via heart, breath, and korotkoff sounds by wearable piezoelectret patches. Adv Sci, 10, 2301180(2023).
[17] X Shi, ShiX, ZuoY, al ZhaiPet, Y Zuo, ShiX, ZuoY, al ZhaiPet, P Zhai et al. Large-area display textiles integrated with functional systems. Nature, 591, 240-245(2021).
[18] S Lee, LeeS, FranklinS, al HassaniFAet, S Franklin, LeeS, FranklinS, al HassaniFAet, FA Hassani et al. Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science, 370, 966-970(2020).
[19] YW Jiang, JiangYW, ZhangZT, al WangYXet, ZT Zhang, JiangYW, ZhangZT, al WangYXet, YX Wang et al. Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science, 375, 1411-1417(2022).
[20] DS Wang, WangDS, LiJP, MemikG, JP Li, WangDS, LiJP, MemikG, G Memik. User identification based on finger-vein patterns for consumer electronics devices. IEEE Trans Consum Electron, 56, 799-804(2010).
[21] W Xu, XuW, LiuSD, al YangJYet, SD Liu, XuW, LiuSD, al YangJYet, JY Yang et al. Self-powered flexible handwriting input panel with 1D output enabled by convolutional neural network. Nano Energy, 101, 107557(2022).
[22] G Maddirala, MaddiralaG, SearleT, al WangXet, T Searle, MaddiralaG, SearleT, al WangXet, X Wang et al. Multifunctional skin-compliant wearable sensors for monitoring human condition applications. Appl Mater Today, 26, 101361(2022).
[23] D Kireev, KireevD, SelK, al IbrahimBet, K Sel, KireevD, SelK, al IbrahimBet, B Ibrahim et al. Continuous cuffless monitoring of arterial blood pressure via graphene bioimpedance tattoos. Nat Nanotechnol, 17, 864-870(2022).
[24] Z Li, LiZ, ChenJX, al LiLZet, JX Chen, LiZ, ChenJX, al LiLZet, LZ Li et al. Exceptional-point-enhanced sensing in an all-fiber bending sensor. Opto-Electron Adv, 6, 230019(2023).
[25] HG Feng, FengHG, ChenX, al ZhuRZet, X Chen, FengHG, ChenX, al ZhuRZet, RZ Zhu et al. Seeing at a distance with multicore fibers. Opto-Electron Adv, 7, 230202(2024).
[26] HH Liu, LiuHH, HuDJJ, al SunQZet, DJJ Hu, LiuHH, HuDJJ, al SunQZet, QZ Sun et al. Specialty optical fibers for advanced sensing applications. Opto-Electron Sci, 2, 220025(2023).
[27] ZH Cai, CaiZH, LiBZ, al BaiZYet, BZ Li, CaiZH, LiBZ, al BaiZYet, ZY Bai et al. Encrypted optical fiber tag based on encoded fiber Bragg grating array. Int J Extreme Manuf, 5, 035502(2023).
[28] L Zhang, ZhangL, ZhenYQ, TongLM, YQ Zhen, ZhangL, ZhenYQ, TongLM, LM Tong. Optical micro/nanofiber enabled tactile sensors and soft actuators: a review. Opto-Electron Sci, 3, 240005(2024).
[29] J Pan, PanJ, WangQ, al GaoSKet, Q Wang, PanJ, WangQ, al GaoSKet, SK Gao et al. Knot-inspired optical sensors for slip detection and friction measurement in dexterous robotic manipulation. Opto-Electron Adv, 6, 230076(2023).
[30] R Jha, JhaR, MishraP, KumarS, P Mishra, JhaR, MishraP, KumarS, S Kumar. Advancements in optical fiber-based wearable sensors for smart health monitoring. Biosens Bioelectron, 254, 116232(2024).
[31] R Min, MinR, HuXH, al PereiraLet, XH Hu, MinR, HuXH, al PereiraLet, L Pereira et al. Polymer optical fiber for monitoring human physiological and body function: a comprehensive review on mechanisms, materials, and applications. Opt Laser Technol, 147, 107626(2022).
[32] JJ Guo, GuoJJ, ZhouBQ, al ZongRet, BQ Zhou, GuoJJ, ZhouBQ, al ZongRet, R Zong et al. Stretchable and highly sensitive optical strain sensors for human-activity monitoring and healthcare. ACS Appl Mater Interfaces, 11, 33589-33598(2019).
[33] HT Zhu, ZhuHT, LuoJX, al DaiQet, JX Luo, ZhuHT, LuoJX, al DaiQet, Q Dai et al. Spatiotemporal hemodynamic monitoring via configurable skin-like microfiber Bragg grating group. Opto-Electron Adv, 6, 230018(2023).
[34] MH Chen, ChenMH, HeYC, al LiangHHet, YC He, ChenMH, HeYC, al LiangHHet, HH Liang et al. Stretchable and strain-decoupled fluorescent optical fiber sensor for body temperature and movement monitoring. ACS Photonics, 9, 1415-1424(2022).
[35] FZ Tan, TanFZ, LyuWM, al ChenSYet, WM Lyu, TanFZ, LyuWM, al ChenSYet, SY Chen et al. Contactless vital signs monitoring based on few-mode and multi-core fibers. Opto-Electron Adv, 3, 190034(2020).
[36] JJ Guo, GuoJJ, NiuMX, YangCX, MX Niu, GuoJJ, NiuMX, YangCX, CX Yang. Highly flexible and stretchable optical strain sensing for human motion detection. Optica, 4, 1285-1288(2017).
[37] LY Li, LiLY, LiuYF, al SongCYet, YF Liu, LiLY, LiuYF, al SongCYet, CY Song et al. Wearable alignment-free microfiber-based sensor chip for precise vital signs monitoring and cardiovascular assessment. Adv Fiber Mater, 4, 475-486(2022).
[38] HT Zhu, ZhuHT, ZhanLW, al DaiQet, LW Zhan, ZhuHT, ZhanLW, al DaiQet, Q Dai et al. Self‐assembled wavy optical microfiber for stretchable wearable sensor. Adv Opt Mater, 9, 2002206(2021).
[39] YN Pang, PangYN, LiuB, al LiuJet, B Liu, PangYN, LiuB, al LiuJet, J Liu et al. Singlemode-multimode-singlemode optical fiber sensor for accurate blood pressure monitoring. J Light Technol, 40, 4443-4450(2022).
[40] LY Li, LiLY, ShengSF, al LiuYFet, SF Sheng, LiLY, ShengSF, al LiuYFet, YF Liu et al. Automatic and continuous blood pressure monitoring via an optical-fiber-sensor-assisted smartwatch. PhotoniX, 4, 21(2023).
[41] YK Wang, WangYK, YuXL, al JiangCLet, XL Yu, WangYK, YuXL, al JiangCLet, CL Jiang et al. Micro-nano fiber flexible multimodal sensors for fingerprint recognition. IEEE Sens J, 24, 4504-4509(2024).
[43] Z Wang, WangZ, ChenZY, al MaLet, ZY Chen, WangZ, ChenZY, al MaLet, L Ma et al. Optical microfiber intelligent sensor: wearable cardiorespiratory and behavior monitoring with a flexible wave-shaped polymer optical microfiber. ACS Appl Mater Interfaces, 16, 8333-8345(2024).
[44] RF Kuang, KuangRF, WangZ, al MaLet, Z Wang, KuangRF, WangZ, al MaLet, L Ma et al. Smart photonic wristband for pulse wave monitoring. Opto-Electron Sci, 3, 240009(2024).
[45] A Leal-Junior, Leal-JuniorA, AvellarL, al BiaziVet, L Avellar, Leal-JuniorA, AvellarL, al BiaziVet, V Biazi et al. Multifunctional flexible optical waveguide sensor: on the bioinspiration for ultrasensitive sensors development. Opto-Electron Adv, 5, 210098(2022).
[46] LL Wang, WangLL, ZhongC, al KeDNet, C Zhong, WangLL, ZhongC, al KeDNet, DN Ke et al. Ultrasoft and highly stretchable hydrogel optical fibers for in vivo optogenetic modulations. Adv Opt Mater, 6, 1800427(2018).
[47] BJ Zha, ZhaBJ, WangZ, al MaLet, Z Wang, ZhaBJ, WangZ, al MaLet, L Ma et al. Intelligent wearable photonic sensing system for remote healthcare monitoring using stretchable elastomer optical fiber. IEEE Internet Things J, 11, 17317-17329(2024).
[48] R Rendeiro, RendeiroR, JargusJ, al NedomaJet, J Jargus, RendeiroR, JargusJ, al NedomaJet, J Nedoma et al. The possibilities of using a mixture of PDMS and phosphor in a wide range of industry applications. Opto-Electron Adv, 7, 240133(2024).
[49] K Jakubowski, JakubowskiK, HuangCS, al BoeselLFet, CS Huang, JakubowskiK, HuangCS, al BoeselLFet, LF Boesel et al. Recent advances in photoluminescent polymer optical fibers. Curr Opin Solid State Mater Sci, 25, 100912(2021).
[50] TL Li, LiTL, WangQA, al SuYFet, QA Wang, LiTL, WangQA, al SuYFet, YF Su et al. AI-assisted disease monitoring using stretchable polymer-based sensors. ACS Appl Mater Interfaces, 15, 30924-30934(2023).
[51] XY Fan, FanXY, HuangY, al DingXRet, Y Huang, FanXY, HuangY, al DingXRet, XR Ding et al. Alignment‐free liquid‐capsule pressure sensor for cardiovascular monitoring. Adv Funct Mater, 28, 1805045(2018).
[52] Y Fu, FuY, ZhaoS, al WangLQet, S Zhao, FuY, ZhaoS, al WangLQet, LQ Wang et al. A wearable sensor using structured silver‐particle reinforced PDMS for radial arterial pulse wave monitoring. Adv Healthc Mater, 8, 1900633(2019).
[53] ZQ Song, SongZQ, LiWY, al BaoYet, WY Li, SongZQ, LiWY, al BaoYet, Y Bao et al. Bioinspired microstructured pressure sensor based on a janus graphene film for monitoring vital signs and cardiovascular assessment. Adv Electron Mater, 4, 1800252(2018).
[54] YJ Li, LiYJ, WangZL, al ZhangLet, ZL Wang, LiYJ, WangZL, al ZhangLet, L Zhang et al. Characters available in photoplethysmogram for blood pressure estimation: beyond the pulse transit time. Australas Phys Eng Sci Med, 37, 367-376(2014).
[55] M Ding, DingM, ZhouH, al XieHet, H Zhou, DingM, ZhouH, al XieHet, H Xie et al. A gated recurrent unit neural networks based wind speed error correction model for short-term wind power forecasting. Neurocomputing, 365, 54-61(2019).
[56] YS Wang, WangYS, XiaST, al TangQTet, ST Xia, WangYS, XiaST, al TangQTet, QT Tang et al. Novel consistent random forest framework: Bernoulli random forests. IEEE Trans Neural Netw Learn Syst, 29, 3510-3523(2018).
[57] YC Liu, LiuYC, LiHY, al LiangXPet, HY Li, LiuYC, LiHY, al LiangXPet, XP Liang et al. Speech recognition using intelligent piezoresistive sensor based on polystyrene sphere microstructures. Adv Intell Syst, 5, 2200427(2023).
[58] ZC Yu, YuZC, XuJH, al GongHXet, JH Xu, YuZC, XuJH, al GongHXet, HX Gong et al. Bioinspired self-powered piezoresistive sensors for simultaneous monitoring of human health and outdoor UV light intensity. ACS Appl Mater Interfaces, 14, 5101-5111(2022).
[59] R Mizuno, MizunoR, FujimotoS, al NakanoHet, S Fujimoto, MizunoR, FujimotoS, al NakanoHet, H Nakano et al. Atrial conduction abnormalities in patients with systemic progressive sclerosis. Eur Heart J, 18, 1995-2001(1997).
[60] E Mejía-Mejía, Mejía-MejíaE, MayJM, al ElgendiMet, JM May, Mejía-MejíaE, MayJM, al ElgendiMet, M Elgendi et al. Differential effects of the blood pressure state on pulse rate variability and heart rate variability in critically ill patients. Npj Digit Med, 4, 82(2021).
[61] R Favilla, FavillaR, ZuccalàVC, CoppiniG, VC Zuccalà, FavillaR, ZuccalàVC, CoppiniG, G Coppini. Heart rate and heart rate variability from single-channel video and ICA integration of multiple signals. IEEE J Biomed Health Inform, 23, 2398-2408(2019).
[62] M Peetermans, PeetermansM, GulerI, al MeerssemanPet, I Guler, PeetermansM, GulerI, al MeerssemanPet, P Meersseman et al. Impact of BMI on outcomes in respiratory ECMO: an ELSO registry study. Intensive Care Med, 49, 37-49(2023).
[63] J Boehmer, BoehmerJ, MarkG, al WenGZet, G Mark, BoehmerJ, MarkG, al WenGZet, GZ Wen et al. Impact of body mass index on device measured diagnostic sensor measurements in ambulatory heart failure patients. J Card Fail, 24, S128-S129(2018).
[64] X Guo, GuoX, WangY, al ZhouNWet, Y Wang, GuoX, WangY, al ZhouNWet, NW Zhou et al. Optimal weighted two-sample
[65] PB Dominelli, DominelliPB, ArchizaB, al RamsookAHet, B Archiza, DominelliPB, ArchizaB, al RamsookAHet, AH Ramsook et al. Effects of respiratory muscle work on respiratory and locomotor blood flow during exercise. Exp Physiol, 102, 1535-1547(2017).
[66] PY Chan, ChanPY, RyanNP, al ChenDet, NP Ryan, ChanPY, RyanNP, al ChenDet, D Chen et al. Novel wearable and contactless heart rate, respiratory rate, and oxygen saturation monitoring devices: a systematic review and meta‐analysis. Anaesthesia, 77, 1268-1280(2022).
[67] H Luo, LuoH, YangDY, al BarszczykAet, DY Yang, LuoH, YangDY, al BarszczykAet, A Barszczyk et al. Smartphone-based blood pressure measurement using transdermal optical imaging technology. Circ Cardiovasc Imaging, 12, e008857(2019).
[68] Z Hermányi, HermányiZ, PokolyB, al VisolyiGet, B Pokoly, HermányiZ, PokolyB, al VisolyiGet, G Visolyi et al. Evaluation of meditech ABPM-06 ambulatory blood pressure measuring device, according to the European Society of Hypertension, the British Hypertension Society and the International Organization for Standardization protocol. Blood Press Monit, 24, 208-211(2019).
[69] A Debray, DebrayA, RavanelliN, al Chenette-StewartOet, N Ravanelli, DebrayA, RavanelliN, al Chenette-StewartOet, O Chenette-Stewart et al. Effect of exercise training on blood pressure in healthy postmenopausal females: a systematic review with meta-analysis. Med Sci Sports Exerc, 55, 1317-1325(2023).
Get Citation
Copy Citation Text
Wenbo Li, Yukun Long, Yingyin Yan, Kun Xiao, Zhuo Wang, Di Zheng, Arnaldo Leal-Junior, Santosh Kumar, Beatriz Ortega, Carlos Marques, Xiaoli Li, Rui Min. Wearable photonic smart wristband for cardiorespiratory function assessment and biometric identification[J]. Opto-Electronic Advances, 2025, 8(5): 240254
Received: Oct. 26, 2024
Accepted: Mar. 3, 2025
Published Online: Aug. 5, 2025
The Author Email: