Laser & Optoelectronics Progress, Volume. 58, Issue 8, 0810008(2021)

SAR Image Target Recognition Based on Improved Residual Attention Network

Baodai Shi*, Qin Zhang, Yao Li, and Yuhuan Li
Author Affiliations
  • College of Graduate, Air Force Engineering University, Xi'an, Shaanxi 710051, China
  • show less
    References(27)

    [1] Yang G, Chen K X, Zhou M Y et al. Study evolution of detection and recognition on target in SAR image[J]. Progress in Geophysics, 22, 617-621(2007).

    [3] Krizhevsky A, Sutskever I, Hinton G E et al. ImageNet classification with deep convolutional neural networks[C]. //Proceedings of the 25th Interference Conference on Neural Information Processing Systems, December 5-8, 2013, Lake Tahoe, Nevada, USA. New York: Curran Associates, 1, 1097-1105(2012).

    [4] Bengio Y, Lamblin P, Popovici D et al. Greedy layer-wise training of deep networks[C]. //Proceedings of the 19th International Conference on Neural Information Processing Systems, December 4-7, 2006, Vancouver, British Columbia, Canada., 153-160(2006).

    [6] Goodfellow I, Pouget-Abadie J, Mirza M et al. Generative adversarial networks[J]. Communications of the ACM, 63, 2672-2680(2020).

    [8] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C]. //2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA., 770-778(2016).

    [9] Szegedy C, Liu W, Jia Y Q et al. Going deeper with convolutions[C]. //2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA., 1-9(2015).

    [12] Jaderberg M, Simonyan K, Zisserman A et al. Spatial transformer networks[C]. //Proceedings of the 28th International Conference on Neural Information Processing Systems, December 7-12, 2015, Montreal, Quebec, Canada. New York: Curran Associates, 2, 2017-2025(2015).

    [13] Hu J, Shen L, Albanie S et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42, 2011-2023(2020).

    [14] Wang F, Jiang M Q, Qian C et al. Residual attention network for image classification[C]. //2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA., 6450-6458(2017).

    [15] Xie S N, Girshick R, Dollár P et al. Aggregated residual transformations for deep neural networks[C]. //2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA., 5987-5995(2017).

    [16] Wang X L, Girshick R, Gupta A et al. Non-local neural networks[C]. //2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT, USA., 7794-7803(2018).

    [17] Woo S, Park J, Lee J Y et al. CBAM: convolutional block attention module[M]. //Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018. Lecture notes in computer science. Cham: Springer, 11211, 3-19(2018).

    [18] Fu J, Liu J, Tian H J et al. Dual attention network for scene segmentation[C]. //2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 15-20, 2019, Long Beach, CA, USA., 3141-3149(2019).

    [19] Ross T D, Worrell S W, Velten V J et al. Standard SAR ATR evaluation experiments using the MSTAR public release data set[J]. Proceedings of SPIE, 3370, 566-573(1998).

    [20] Duchi J, Hazan E, Singer Y. Adaptive subgradient methods for online learning and stochastic optimization[J]. Journal of Machine Learning Research, 12, 257-269(2011).

    [22] Chen S Z, Wang H P, Xu F et al. Target classification using the deep convolutional networks for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 54, 4806-4817(2016).

    [24] Zhang N, Donahue J, Girshick R et al. Part-based R-CNNs for fine-grained category detection[M]. //Fleet D, Pajdla T, Schiele B, et al. Computer vision-ECCV 2014. Lecture notes in computer science. Cham: Springer, 8689, 834-849(2014).

    [27] Zhao Q, Principe J C. Support vector machines for SAR automatic target recognition[J]. IEEE Transactions on Aerospace and Electronic Systems, 37, 643-654(2001).

    Tools

    Get Citation

    Copy Citation Text

    Baodai Shi, Qin Zhang, Yao Li, Yuhuan Li. SAR Image Target Recognition Based on Improved Residual Attention Network[J]. Laser & Optoelectronics Progress, 2021, 58(8): 0810008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Aug. 24, 2020

    Accepted: Sep. 10, 2020

    Published Online: Apr. 12, 2021

    The Author Email: Baodai Shi (1908509679@qq.com)

    DOI:10.3788/LOP202158.0810008

    Topics