Infrared and Laser Engineering, Volume. 44, Issue 9, 2547(2015)
Research progress of GISC lidar
[1] [1] Elias P. Optics and communication theory[J]. JOSA, 1953, 43(4): 229-232.
[2] [2] Francia G. Resolving power and information[J]. JOSA, 1955, 45(7): 497-499.
[3] [3] Cheng J, Han S. Incoherent coincidence imaging and its applicability in X-ray diffraction[J]. Physical Review Letters, 2004, 92(9): 093903.
[4] [4] Gatti A, Brambilla E, Bache M, et al. Ghost imaging with thermal light: Comparing entanglement and classical correlation[J]. Physical Review Letters, 2004, 93(9): 093602.
[5] [5] Cao D Z, Xiong J, Wang K. Geometrical optics in correlated imaging systems[J]. Physical Review A, 2005, 71(1): 013801.
[6] [6] D′angelo M, Shih Y. Quantum imaging[J]. Laser Physics Letters, 2005, 2(12): 567-596.
[7] [7] Naulleau P, Leith E. Imaging through optical fibers by spatial coherence encoding methods[J]. JOSA A, 1996, 13(10): 2096-2101.
[8] [8] Dowski Jr E R, Johnson G E. Wavefront coding: a modern method of achieving high-performance and/or low-cost imaging systems[C]//SPIE′s International Symposium on Optical Science, Engineering, and Instrumentation, 1999: 137-145.
[9] [9] Shemer A, Mendlovic D, Zalevsky Z, et al. Superresolving optical system with time multiplexing and computer decoding[J]. Applied Optics, 1999, 38(35): 7245-7251.
[10] [10] Schwarz C J, Kuznetsova Y, Brueck S. Imaging interferometric microscopy[J]. Optics Letters, 2003, 28(16): 1424-1426.
[11] [11] Zalevsky Z, García J, García-Martínez P, et al. Spatial information transmission using orthogonal mutual coherence coding[J]. Optics Letters, 2005, 30(21): 2837-2839.
[12] [12] Schermelleh L, Carlton P M, Haase S, et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy[J]. Science, 2008, 320(5881): 1332-1336.
[13] [13] Han Shengsheng. Intensity correlation imaging technology for remote sensing[J]. Spacecraft Recovery & Remote Sensing, 2011, 32(5): 44-51. (in Chinese)
[14] [14] Liu H, Han S. Spatial longitudinal coherence length of a thermal source and its influence on lensless ghost imaging[J]. Optics Letters, 2008, 33(8): 824-826.
[15] [15] Gong W, Han S. The influence of axial correlation depth of light field on lensless ghost imaging[J]. JOSA B, 2010, 27(4): 675-678.
[16] [16] Goodman J W. Speckle Phenomena in Optics: Theory and Applications[M]. New York: Wiley, 2007.
[17] [17] Ferri F, Magatti D, Gatti A, et al. High-resolution ghost image and ghost diffraction experiments with thermal light[J]. Physical Review Letters, 2005, 94(18): 183602.
[18] [18] Gatti A, Bache M, Magatti D, et al. Coherent imaging with pseudo-thermal incoherent light[J]. Journal of Modern Optics, 2006, 53(5-6): 739-760.
[19] [19] Gong W, Han S. A method to improve the visibility of ghost images obtained by thermal light[J]. Physics Letters A, 2010, 374(8): 1005-1008.
[20] [20] Bai Y, Han S. Ghost imaging with thermal light by third-order correlation[J]. Physical Review A, 2007, 76(4): 043828.
[21] [21] Ou L H, Kuang L M. Ghost imaging with third-order correlated thermal light[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2007, 40(10): 1833.
[22] [22] Zhang P, Gong W, Shen X, et al. Homodyne detection in ghost imaging with thermal light[J]. Physical Review A, 2009, 80(3): 033827.
[23] [23] Zhang P, Gong W, Shen X, et al. Correlated imaging through atmospheric turbulence[J]. Physical Review A, 2010, 82(3): 033817.
[24] [24] Donoho D L. Compressed sensing[J]. Information Theory, IEEE Transactions on, 2006, 52(4): 1289-1306.
[25] [25] Candè E J, Wakin M B. An introduction to compressive sampling[J]. Signal Processing Magazine, IEEE, 2008, 25(2): 21-30.
[26] [26] Gong W, Han S. Super-resolution far-field ghost imaging via compressive sampling[EB/OL]. http://arxiv.org/abs/0911.4750v3, 2009.
[27] [27] Du J, Gong W, Han S. The influence of sparsity property of images on ghost imaging with thermal light[J]. Optics Letters, 2012, 37(6): 1067-1069.
[28] [28] Gong W, Han S. Experimental investigation of the quality of lensless super-resolution ghost imaging via sparsity constraints[J]. Physics Letters A, 2012, 376(17): 1519-1522.
[29] [29] Chen J, Gong W, Han S. Sub-Rayleigh ghost imaging via sparsity constraints based on a digital micro-mirror device[J]. Physics Letters A, 2013, 377(31): 1844-1847.
[30] [30] Zhao C, Gong W, Chen M, et al. Ghost imaging lidar via sparsity constraints[J]. Applied Physics Letters, 2012, 101(14): 141123.
[31] [31] Gong W, Zhao C, Jiao J, et al. Three-dimensional ghost imaging ladar[EB/OL]. http://arxiv.org/abs/1301.5767, 2013.
[32] [32] Woodward P M, Probability and Information Theory, with Applications to Radar[M]. New York: McGraw-Hill, 1953.
[33] [33] Li Enrong, Chen Mingliang, Gong Wenlin, et al. Mutual information of ghost imaging systems[J]. Acta Optica Sinica, 2013(12): 101-106. (in Chinese)
[34] [34] Chen M, Li E, Han S. Application of multi-correlation-scale measurement matrices in ghost imaging via sparsity constraints[J]. Applied Optics, 2014, 53(13): 2924-2928.
[35] [35] Xu X, Li E, Shen X, et al. Optimization of speckle patterns in ghost imaging via sparse constraints by mutual coherence minimization[J]. Chinese Optics Letters, 2015, 13(7): 071101.
[36] [36] Yu H, Li E, Gong W, et al. Structured image reconstruction for three-dimensional ghost imaging lidar[J]. Optics Express, 2015, 23(11): 14541-14551.
[37] [37] Li H, Xiong J, Zeng G. Lensless ghost imaging for moving objects[J]. Optical Engineering, 2011, 50(12): 127005-1-127005-6.
[38] [38] Zhang Cong, Gong Wenlin, Han Shensheng. Ghost imaging for moving targets and its application in remote sensing[J]. Chinese Journal of Lasers, 2012, 39(12): 204-210. (in Chinese)
[39] [39] Li E, Bo Z, Chen M, et al. Ghost imaging of a moving target with an unknown constant speed[J]. Applied Physics Letters, 2014, 104(25): 251120.
[40] [40] Li X, Deng C, Chen M, et al. Ghost imaging for an axially moving target with an unknown constant speed[J]. Photonics Research, 2015, 3(4): 153-157.
[41] [41] Gong W, Han S. Multiple-input ghost imaging via sparsity constraints[J]. JOSA A, 2012, 29(8): 1571-1579.
[42] [42] Bo Z, Gong W, Li E, et al. Multiple-input ghost imaging via sparsity constraints with thermal light[J]. Applied Physics Express, 2014, 7(10): 102501.
[43] [43] Chen Mingliang, Li Enrong, Wang Hui. et al. Ghost image based on sparse array pseudothermal light system[J]. Acta Optica Sinica, 2012, 32(5): 17-24. (in Chinese)
[44] [44] Merrill I S. Introduction to Radar Systems[M]. New York: Mc Grow-Hill, 2001.
Get Citation
Copy Citation Text
Han Shengshen, Gong Wenlin, Chen Minliang, Li Enrong, Bo Zunwang, Li Wang, Zhang Hui, Gao Xin, Deng Chenjin, Mei Xiaodong, Wang Chenglong. Research progress of GISC lidar[J]. Infrared and Laser Engineering, 2015, 44(9): 2547
Category: 特约专家报告
Received: Sep. 6, 2015
Accepted: Sep. 13, 2015
Published Online: Jan. 26, 2016
The Author Email: Shengshen Han (sshan@mail.shcnc.ac.cn)
CSTR:32186.14.