Journal of Synthetic Crystals, Volume. 50, Issue 1, 94(2021)
Simulation Analysis of the Effect of Ni and Mo Co-Doping on the Properties of SnO2
[2] [2] JEANNOT D, PINARD J, RAMONI P, et al. Physical and chemical properties of metal oxide additions to Ag[J]. IEEE Transactions on Components Packaging & Manufacturing Technology Part A, 1994, 17(1): 17-23.
[3] [3] JEANNOT D, PINARD J, RAMONI P, et al. The effects of metal oxide additions or dopants on the electrical performance of AgSnO2 contact materials[J]. Proceedings of IEEE Holm Conference on Electrical Contacts, 1993: 51-59.
[4] [4] FRANCISCO H A, MYERS M. Optimization of silver tin oxide chemistry to enhance electrical performance in a.c. application[C]. //Electrical Contacts-1998. Proceedings of the Forty-Fourth IEEE Holm Conference on Electrical Contacts (Cat. No.98CB36238). October 26-28, 1998, Arlington, VA, USA. IEEE,1998: 193-201.
[8] [8] MUTO Y, MNAKATO S, OKA N, et al. High-rate deposition of Ta-doped SnO2 films by reactive magnetron sputtering using a Sn-Ta metal-sintered target [J]. Thin Solid Films, 2012, 520(10): 3746-3750.
[9] [9] NGOC M N, MANH Q L, MINH H N, et al. Synthesis of tantalum-doped tin oxide thin films by magnetron sputtering for photovoltaic applications[J]. Journal of Electronic Materials, 2017, 46(6): 3667-3673.
[10] [10] HE L, LUAN C, FENG X, et al. Effect of niobium doping on the structural, electrical and optical properties of epitaxial SnO2 films on MgF2 (110) substrates by MOCVD [J]. Journal of Alloys and Compounds, 2018, 741: 677-681.
[12] [12] WANG J Q, LIU Z, CHEN L, et al. Effect of Cu F co-doping on the properties of AgSnO2 contact[J]. Materials, 2019, 12(14): 2315-.
[13] [13] WANG J Q, ZHOU L, ZHU Y C, et al. Effect of Cu, N co-doping on conductive properties of AgSnO2contact[J]. Materials Research Express, 2019, 6(10): 106311-.
[16] [16] GHOSH G, ASTA M. First-principles calculations of structural energetics of Cu-TM (TM=Ti, Zr, Hf) intermetallics[J]. Acta Materialia, 2005, 53(11): 3225-3252.
[17] [17] DOLBEC R, KHAKANI M A E, SERVENTI A M, et al. Microstructure and physical properties of nanostructured tin oxide thin films grown by means of pulsed laser deposition [J]. Thin Solid Films, 2002, 419(1/2): 230-236.
[22] [22] WOLDEMAR V. Lehrbuch der Kristallphysik[M].Wiesbaden: Vieweg+Teubner Verlag, 1966.
[23] [23] REUSS A. Calculation of the flow limits of mixed crystals on the basis of the plasticity of monocrystals[J]. Z Anew Math Mech, 1929(9): 49-58.
[24] [24] HILL R. The elastic behaviour of a crystalline aggregate[J]. Proceedings of the Physical Society, 2002, 65(5): 349-354.
[25] [25] RANGANATHAN S I, OSTOJA S M. Universal elastic anisotropy index[J]. Physical Review Letters, 2008, 101(5): 055504
[26] [26] CHEN X Q, NIU H, LI D, et al. Modeling hardness of polycrystalline materials and bulk metallic glasses[J]. Intermetallics, 2011, 19(9): 1275-1281.
[27] [27] WU Z J, ZHAO E J, XIANG H P, et al. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles[J]. Physical Review B, 2007, 76(5): 054115.
Get Citation
Copy Citation Text
CHANG Yongqiang, WANG Jingqin, ZHU Yancai, ZHANG Guangzhi, HU Delin. Simulation Analysis of the Effect of Ni and Mo Co-Doping on the Properties of SnO2[J]. Journal of Synthetic Crystals, 2021, 50(1): 94
Category:
Received: Oct. 20, 2020
Accepted: --
Published Online: Apr. 15, 2021
The Author Email: Yongqiang CHANG (1448008088@qq.com)
CSTR:32186.14.