Journal of Innovative Optical Health Sciences, Volume. 18, Issue 5, 2550022(2025)
Intracerebroventricular injection of Candida albicans induces fungal encephalitis with distinct magnetic resonance imaging characteristics
[1] O. Flores-Maldonado, G. M. González, J. F. Enríquez-Bañuelos et al. Candida albicans causes brain regional invasion and necrosis, and activation of microglia during lethal neonatal neurocandidiasis. Microbes. Infect., 25, 105119(2023).
[2] W. Yang, R. Liu, Z. Li et al. Discovery of new tricyclic oxime sampangine derivatives as potent antifungal agents for the treatment of cryptococcosis and candidiasis. J. Med. Chem., 67, 4726-4738(2024).
[3] B. Pathakumari, G. Liang, W. Liu et al. Immune defence to invasive fungal infections: A comprehensive review. Biomed. Pharmacother., 130, 110550(2020).
[4] Y. He, J. Liu, Y. Chen et al. Neutrophil extracellular traps in C. albicans infection. Front. Immunol., 13, 913028(2022).
[5] E. Y. Lee, L. C. Chan, H. Wang et al. PACAP is a pathogen-inducible resident antimicrobial neuropeptide affording rapid and contextual molecular host defense of the brain. Proc. Natl. Acad. Sci. USA, 118, e1917623117(2021).
[6] C. Yan, C. Wang, X. Shao et al. Dual-targeted carbon-dot-drugs nanoassemblies for modulating Alzheimer’s related amyloid-β aggregation and inhibiting fungal infection. Mater. Today Bio., 12, 100167(2021).
[7] X. Liu, X. Huang, J. Wang et al. An active domain SA-2 derived from cystatin-SA, and its antifungal activity. Amino Acids, 55, 101-112(2023).
[8] Y. Yan, Y. Li, Z. Zhang et al. Advances of peptides for antibacterial applications. Colloids Surf. B Biointerfaces, 202, 111682(2021).
[9] F. B. Cavassin, J. L. Baú-Carneiro, R. R. Vilas-Boas et al. Sixty years of amphotericin B: An overview of the main antifungal agent used to treat invasive fungal infections. Infect. Dis. Ther., 10, 115-147(2021).
[10] V. Petraitis, R. Petraitiene, J. M. Valdez et al. Amphotericin B penetrates into the central nervous system through focal disruption of the blood brain barrier in experimental hematogenous Candida meningoencephalitis. Antimicrob. Agents Chemother., 63, e01626-19(2019).
[11] R. M. Abdel-Megeed, M. O. Kadry, D. B. Fayed et al. Antimicrobial activity and acetylcholinestrase inhibition of novel synthesized pyrimidine derivatives versus Candida albicans trafficking to brain and kidney. Toxicol. Rep., 6, 262-266(2019).
[12] Y. Wu, S. Du, L. H. Bimler et al. Toll-like receptor 4 and CD11b expressed on microglia coordinate eradication of C. albicans cerebral mycosis. Cell Rep., 42, 113240(2023).
[13] H. T. T. Gander-Bui, J. Schläfli, J. Baumgartner et al. Targeted removal of macrophage-secreted interleukin-1 receptor antagonist protects against lethal C. albicans sepsis. Immunity, 56, 1743-1760(2023).
[14] D. H. Navarathna, D. D. Roberts, J. Munasinghe et al. Imaging Candida infections in the host. Methods Mol. Biol., 1356, 69-78(2016).
[15] Y. Wu, S. Du, J. L. Johnson et al. Microglia and amyloid precursor protein coordinate control of transient Candida cerebritis with memory deficits. Nat. Commun., 10, 58(2019).
[16] Y. Han, Y. Liu, X. Ma et al. Antibiotics armed neutrophils as a potential therapy for brain fungal infection caused by chemotherapy-induced neutropenia. Biomaterials, 274, 120849(2021).
[17] Y. Liu, H. S. Unsal, Y. Tao et al. Automatic brain extraction for rodent MRI images. Neuroinformatics, 18, 395-406(2020).
[18] Z. Liang, C. H. Lee, T. M. Arefin et al. Virtual mouse brain histology from multi-contrast MRI via deep learning. Elife, 11, e72331(2022).
[19] G. A. Johnson, Y. Tian, D. G. Ashbrook et al. Merged magnetic resonance and light sheet microscopy of the whole mouse brain. Proc. Natl. Acad. Sci. USA, 120, e2218617120(2023).
[20] T. M. Arefin, C. H. Lee, Z. Liang et al. Towards reliable reconstruction of the mouse brain corticothalamic connectivity using diffusion MRI. Neuroimage, 273, 120111(2023).
[21] D. H. Navarathna, J. Munasinghe, M J. Lizak et al. MRI confirms loss of blood–brain barrier integrity in a mouse model of disseminated candidiasis. NMR Biomed., 26, 1125-1134(2013).
[22] M. Swidergall, M. Khalaji, N. V. Solis et al. Candidalysin is required for neutrophil recruitment and virulence during systemic C. albicans infection. J. Infect. Dis., 220, 1477-1488(2019).
[23] R. A. Drummond, M. Swamydas, V. Oikonomou et al. CARD9+ microglia promote antifungal immunity via IL-1β- and CXCL1-mediated neutrophil recruitment. Nat. Immunol., 20, 559-570(2019).
[24] W. Bai, Q. Wang, Z. Deng et al. TRAF1 suppresses antifungal immunity through CXCL1-mediated neutrophil recruitment during C. albicans intradermal infection. Cell Commun. Signal., 18, 30(2020).
[25] H. Yao, L. Hu, N. Jiang et al. Thymoquinone attenuates inflammation in C. albicans keratitis by activating Nrf2/HO-1 signaling pathway and reducing fungal load. Cytokine, 172, 156375(2023).
[26] M. S. Lionakis, J. K. Lim, C. C. Lee et al. Organ-specific innate immune responses in a mouse model of invasive candidiasis. J. Innate. Immun., 3, 180-199(2011).
[27] J. Kim, H. Kang, Y. B. Lee et al. A quantitative analysis of spontaneous alternation behaviors on a Y-maze indicates adverse effects of acute social isolation on spatial working memory. Sci. Rep., 13, 14722(2023).
[28] Y. Lan, Z. Ma, L. Chang et al. Sea buckthorn polysaccharide ameliorates high-fat diet induced mice neuroinflammation and synaptic dysfunction via regulating gut dysbiosis. Int. J. Biol. Macromol., 236, 123797(2023).
[29] M. Sprenger, T. S. Hartung, S. Allert et al. Fungal biotin homeostasis is essential for immune evasion after macrophage phagocytosis and virulence. Cell Microbiol., 22, e13197(2020).
[30] M. F. Hamed, V. Enriquez, M. E. Munzen et al. Clinical and pathological characterization of Central Nervous System cryptococcosis in an experimental mouse model of stereotaxic intracerebral infection. PLoS Negl. Trop. Dis., 17, e0011068(2023).
[31] T. Iram, F. Kern, A. Kaur et al. Young CSF restores oligodendrogenesis and memory in aged mice via Fgf17. Nature, 605, 509-515(2022).
[32] R. M. Linville, A. Komin, X. Lan et al. Reversible blood–brain barrier opening utilizing the membrane active peptide melittin in vitro and in vivo. Biomaterials, 275, 120942(2021).
[33] J. Nysten, A. Peetermans, D. Vaneynde et al. The riboflavin biosynthetic pathway as a novel target for antifungal drugs against Candida species. mBio, 15, e0250224(2024).
[34] L. Markey, A. Hooper, L. C. Melon et al. Colonization with the commensal fungus Candida albicans perturbs the gut–brain axis through dysregulation of endocannabinoid signaling. Psychoneuroendocrinology, 121, 104808(2020).
[35] Y. Zhang, J. T. Bailey, E. Xu et al. Mucosal-associated invariant T cells restrict reactive oxidative damage and preserve meningeal barrier integrity and cognitive function. Nat. Immunol., 23, 1714-1725(2022).
Get Citation
Copy Citation Text
Mingsheng Li, Jing Ai, Shuze Li, Jiakang Chen, Hongying Jin, Zhihong Zhang, Xiang Yu. Intracerebroventricular injection of Candida albicans induces fungal encephalitis with distinct magnetic resonance imaging characteristics[J]. Journal of Innovative Optical Health Sciences, 2025, 18(5): 2550022
Category: Research Articles
Received: Mar. 31, 2025
Accepted: May. 5, 2025
Published Online: Aug. 27, 2025
The Author Email: Zhihong Zhang (zhzhang@hainanu.edu.cn), Xiang Yu (yuxiang@hainanu.edu.cn)