Chinese Journal of Lasers, Volume. 46, Issue 12, 1202002(2019)

Microstructure and Mechanical Properties of Inconel625 Superalloy Fabricated by Selective Laser Melting

Xiujuan Chen1,2, Guorui Zhao2、**, Dongdong Dong2, Wenyou Ma2, Yongjuan Hu1, and Min Liu2、*
Author Affiliations
  • 1School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
  • 2Key Lab of Guangdong for Modern Surface Engineering Technology, Guangdong Institute of New Materials,Guangzhou, Guangdong 510651, China
  • show less
    References(38)

    [1] Cai H P. Study on properties of Inconel 625 alloy under high temperature and hot corrosion environment[D]. Lanzhou: Lanzhou University of Technology(2018).

    [2] Wang T J, Fan H, Zhang B Q et al[J]. Nickel-based superalloy for key components of ultra-supercritical steam turbine operating above 700 ℃ Dongfang Turbine, 2012, 46-53.

    [5] Li K, Hu X J[J]. Comparative study on the cutting performance of Inconel 625 with different tools Manufacturing Technology & Machine Tool, 2016, 107-110.

    [7] Cozar R, Rouby M, Mayonobe B et al. Mechanical properties, corrosion resistance and microstructure of both regular and titanium hardened 625 alloys[J]. Superalloys, 718, 423-436(1991).

    [10] Wang T. Unidirectional solidification behavior of Inconel 625 superalloy under linear electromagnetic stirring[D]. Shenyang: Northeastern University(2016).

    [11] Ivanov D, Travyanov A, Petrovskiy P et al. Evolution of structure and properties of the nickel-based alloy EP718 after the SLM growth and after different types of heat and mechanical treatment[J]. Additive Manufacturing, 18, 269-275(2017).

    [15] Koutiri I, Pessard E, Peyre P et al. Influence of SLM process parameters on the surface finish, porosity rate and fatigue behavior of as-built Inconel 625 parts[J]. Journal of Materials Processing Technology, 255, 536-546(2018).

    [17] Anam M A, Pal D, Stucker B. Modeling and experimental validation of nickel-based super alloy (Inconel 625) made using selective laser melting. [C]∥Solid Freeform Fabrication (SFF) Symposium, August 12-14, 2013, Austin, TX, United States. [S.l.: s.n.], 463-473(2013).

    [18] Zhou Y H, Zhang Z H, Wang Y P et al. Selective laser melting of typical metallic materials: an effective process prediction model developed by energy absorption and consumption analysis[J]. Additive Manufacturing, 25, 204-217(2019).

    [22] Kruth J P. Froyen L, van Vaerenbergh J, et al. Selective laser melting of iron-based powder[J]. Journal of Materials Processing Technology, 149, 616-622(2004).

    [30] Sing S L, Yeong W Y, Wiria F E. Selective laser melting of titanium alloy with 50 wt% tantalum: microstructure and mechanical properties[J]. Journal of Alloys and Compounds, 660, 461-470(2016).

    Tools

    Get Citation

    Copy Citation Text

    Xiujuan Chen, Guorui Zhao, Dongdong Dong, Wenyou Ma, Yongjuan Hu, Min Liu. Microstructure and Mechanical Properties of Inconel625 Superalloy Fabricated by Selective Laser Melting[J]. Chinese Journal of Lasers, 2019, 46(12): 1202002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser manufacturing

    Received: Jun. 20, 2019

    Accepted: Jul. 29, 2019

    Published Online: Dec. 2, 2019

    The Author Email: Zhao Guorui (grzhao11s@alum.imr.ac.cn), Liu Min (liumin@gdas.gd.cn)

    DOI:10.3788/CJL201946.1202002

    Topics