Journal of the Chinese Ceramic Society, Volume. 52, Issue 4, 1384(2024)

Enhancing Energy Storage Performance of BaTiO3-Based Ceramics through Relaxor Regulation

HU Jiawen, TANG Luomeng, YANG Haichen, WU Lukang, LIU Jinjun, and PAN Zhongbin*
Author Affiliations
  • [in Chinese]
  • show less
    References(27)

    [1] [1] LI J L, SHEN Z H, CHEN X H, et al. Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications[J]. Nat Mater, 2020, 19(9): 999-1005.

    [2] [2] SIMON P, GOGOTSI Y. Perspectives for electrochemical capacitors and related devices[J]. Nat Mater, 2020, 19(11): 1151-1163.

    [3] [3] DU Jinhua, LI Yong, SUN Ningning, et al. Acta Phys Sin, 2020, 69(12): 161-172.

    [4] [4] JIAN X D, CHEN X, ZHANG Q M. Relaxor ferroelectric capacitors embrace polymorphic nanodomains[J]. Joule, 2019, 3(10): 2296-2298.

    [5] [5] LI J L, LI F, XU Z, et al. Multilayer lead-free ceramic capacitors with ultrahigh energy density and efficiency[J]. Adv Mater, 2018, 30(32): 1802155.

    [6] [6] SHEN Zongyang, LI Jingfeng. J Chin Ceram Soc, 2010, 38(3): 510-520.

    [7] [7] DU Hongliang, YANG Zetian, GAO Feng, et al. J Inorg Mater, 2018, 33(10): 1046-1058.

    [8] [8] YANG Minzheng, JIANG Jianyong, SHEN Yang. J Chin Ceram Soc, 2021, 49(7): 1249-1262.

    [9] [9] ZHONG Michang, LU Biao, ZOU Yixuan, et al. J Chin Ceram Soc, 2019, 47(6): 764-770.

    [10] [10] HAO X H, ZHAI J W, KONG L B, et al. A comprehensive review on the progress of lead zirconate-based antiferroelectric materials[J]. Prog Mater Sci, 2014, 63: 1-57.

    [11] [11] XU R, XU Z, FENG Y J, et al. Discharging and energy-releasing properties of Pb0.90La0.04Ba0.04 [(Zr0.6Sn0.4)0.85Ti0.15]O3 antiferroelectric ceramics under different electric fields[J]. J Mater Sci Mater Electron, 2016, 27(3): 3071-3075.

    [12] [12] YANG Z T, DU H L, QU S B, et al. Significantly enhanced recoverable energy storage density in potassium-sodium niobate-based lead free ceramics[J]. J Mater Chem A, 2016, 4(36): 13778-13785.

    [13] [13] CIMA M J. Next-generation wearable electronics[J]. Nat Biotechnol, 2014, 32: 642-643.

    [14] [14] LEE J, LLERENA ZAMBRANO B, WOO J, et al. Recent advances in 1D stretchable electrodes and devices for textile and wearable electronics: Materials, fabrications, and applications[J]. Adv Mater, 2020, 32(5): 1902532.

    [15] [15] TAN Yaohong, LIU Chengkun, MAO Xue, et al. J Mater Eng, 2019, 47(10): 10-21.

    [16] [16] YAO Z H, SONG Z, HAO H, et al. Homogeneous/inhomogeneous- structured dielectrics and their energy-storage performances[J]. Adv Mater, 2017, 29(20): 1601727.

    [17] [17] LI Q, YAO F Z, LIU Y, et al. High-temperature dielectric materials for electrical energy storage[J]. Annu Rev Mater Res, 2018, 48: 219-243.

    [18] [18] SUN N N, LI Y, ZHANG Q W, et al. Giant energy-storage density and high efficiency achieved in (Bi0.5Na0.5)TiO3-Bi(Ni0.5Zr0.5)O3 thick films with polar nanoregions[J]. J Mater Chem C, 2018, 6(40): 10693-10703.

    [19] [19] WANG D W, FAN Z M, ZHOU D, et al. Bismuth ferrite-based lead-free ceramics and multilayers with high recoverable energy density[J]. J Mater Chem A, 2018, 6(9): 4133-4144.

    [20] [20] JI Xubao, HUO Yonghui. Electron Compon Inf Technol, 2020, 4(8): 5-6.

    [21] [21] CHEN X F, ZHANG H L, CAO F, et al. Charge-discharge properties of lead zirconate stannate titanate ceramics[J]. J Appl Phys, 2009, 106(3): 034105.

    [22] [22] CHEN K K, BAI H R, YAN F, et al. Achieving superior energy storage properties and ultrafast discharge speed in environment-friendly niobate-based glass ceramics[J]. ACS Appl Mater Interfaces, 2021, 13(3): 4236-4243.

    [23] [23] LIU J H, WANG H T, SHEN B, et al. Significantly enhanced energy-storage density in the strontium Barium niobate-based/titanate-based glass-ceramics[J]. J Am Ceram Soc, 2017, 100(2): 506-510.

    [24] [24] YAN F, BAI H R, ZHOU X F, et al. Realizing superior energy storage properties in lead-free ceramics via a macro-structure design strategy[J]. J Mater Chem A, 2020, 8(23): 11656-11664.

    [25] [25] QIAO X S, SHENG A H, WU D, et al. A novel multifunctional ceramic with photoluminescence and outstanding energy storage properties[J]. Chem Eng J, 2021, 408: 127368.

    [26] [26] SHEN B Z, LI Y, HAO X H. Multifunctional all-inorganic flexible capacitor for energy storage and electrocaloric refrigeration over a broad temperature range based on PLZT 9/65/35 thick films[J]. ACS Appl Mater Interfaces, 2019, 11(37): 34117-34127.

    [27] [27] YANG L T, KONG X, LI F, et al. Perovskite lead-free dielectrics for energy storage applications[J]. Prog Mater Sci, 2019, 102: 72-108.

    Tools

    Get Citation

    Copy Citation Text

    HU Jiawen, TANG Luomeng, YANG Haichen, WU Lukang, LIU Jinjun, PAN Zhongbin. Enhancing Energy Storage Performance of BaTiO3-Based Ceramics through Relaxor Regulation[J]. Journal of the Chinese Ceramic Society, 2024, 52(4): 1384

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 7, 2023

    Accepted: --

    Published Online: Aug. 19, 2024

    The Author Email: PAN Zhongbin (panzhongbin@163.com)

    DOI:10.14062/j.issn.0454-5648.20230850

    Topics