Laser & Optoelectronics Progress, Volume. 59, Issue 12, 1215003(2022)

Target Tracking Algorithm Based on Siamese Network of Feature Optimization Model

Yongqiang Wu1, Baohua Zhang1,3、*, Xiaoqi Lv2,3, Yu Gu1,3, Yueming Wang1,3, Xin Liu1,3, Yan Ren1, Jianjun Li1,3, and Ming Zhang1,3
Author Affiliations
  • 1School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia , China
  • 2School of Information Engineering, Mongolia Industrial University, Huhehaote010051, Inner Mongolia , China
  • 3Inner Mongolia Key Laboratory of Patten Recognition and Intelligent Image Processing, Baotou 014010, Inner Mongolia , China
  • show less
    Figures & Tables(17)
    Model frame diagram
    Hourglass network and feature optimization model
    Channel attention module[5]
    Spatial attention module[5]
    Training process diagram of loss function
    Comparison of test results of various algorithms in OTB100 data set. (a) Precision rate; (b) success rate
    Test results of various algorithms on Soccer sequence
    Test results of various algorithms on MotorRolling sequence
    Test results of various algorithms on Jogging sequence
    Results of ablation experiment. (a) Precision rate; (b) Success rate
    • Table 1. Structure of backbone network

      View table

      Table 1. Structure of backbone network

      Layer numberNetwork structureConvolution kernelsStride

      Channel

      number

      Template image /pixelSearch image /pixel
      Layer1Input layer‒3135×135263×263
      Conv2d3196‒3133×133261×261
      Conv2d3196‒96131×131259×259
      MaxPool2d3265×65129×129
      Layer2Conv2d31128‒9663×63127×127
      Conv2d31128‒12861×61125×125
      MaxPool2d3230×3062×62
      Layer3Conv2d31256‒12828×2860×60
      Conv2d31256‒25626×2658×58
      Conv2d31256‒25624×2456×56
      MaxPool2d2212×1228×28
      Layer4Conv2d31512‒25610×1026×26
      Layer5Conv2d31512‒5128×824×24
    • Table 2. Comparison of experimental data

      View table

      Table 2. Comparison of experimental data

      NameEpochGot-10kILSVR2015_VIDPrecision rateSuccess rateSpeed/(frame·s-1
      SCSAtt500.8550.64159.871
      Proposed200.8530.64859.497
    • Table 3. Comparison of test results of various algorithms in VOT2018 data set

      View table

      Table 3. Comparison of test results of various algorithms in VOT2018 data set

      NameAccuracyEAOSpeed /(frame·s-1
      Proposed0.53600.192044.33
      SiamFC0.49430.187531.89
      LSART0.49320.32301.00
      CSRDCF0.49100.256210.20
      DeepSRDCF0.48960.275365.30
      ECO-HC0.48420.248675.60
    • Table 4. Challenge performance results of various algorithms in OTB100 data set

      View table

      Table 4. Challenge performance results of various algorithms in OTB100 data set

      NameIPRIVBCOCCDEFSVLRFMOPROVMB
      ProposedSuc0.6240.6460.6090.6130.6090.6360.6820.6160.6300.5450.628
      Pre0.8420.8440.8080.8070.8310.8460.9980.7970.8540.7150.800

      Siam

      RPN

      Suc0.6280.6490.5910.5850.6170.6150.6390.5990.6250.5420.622
      Pre0.8540.8590.7990.7800.8250.8380.9780.7890.8510.7260.816

      Siam

      DWfc

      Suc0.6060.6220.5740.6010.5600.6130.5960.6300.6120.5900.654
      Pre0.8240.7940.7620.7980.7630.8190.9010.8080.8290.7810.841
      CFNetSuc0.5670.5410.5610.5270.5260.5460.6140.5540.5530.4540.540
      Pre0.7860.7070.7560.6990.7140.7310.8880.7050.7590.6010.680

      Siam

      FC

      Suc0.5590.5720.5270.5490.5120.5560.6180.5710.5610.5090.554
      Pre0.7430.7360.6920.7230.6910.7360.9000.7440.7580.6730.707
      StapleSuc0.5480.5290.5600.5430.5510.5210.3940.5400.5330.4750.541
      Pre0.7680.7830.7490.7260.7520.7260.6900.7080.7370.6640.698
      SRDCFSuc0.5440.6130.5830.5590.5440.5610.5140.5970.5500.4600.594
      Pre0.7450.7920.7750.7340.7340.7450.7600.7680.7410.5940.765
      fDSSTSuc0.5050.5590.5230.4600.4270.4750.3820.4580.4770.3860.469
      Pre0.6980.7220.7040.6020.5500.6480.6780.5700.6540.4740.566
    • Table 5. Overall data of deep network ablation experiment

      View table

      Table 5. Overall data of deep network ablation experiment

      NameImproved VGG-NetImproved HourglassAlexNetPrecision rateSuccess rate
      Proposed-2-0.5600.724
      Proposed-A-0.5380.703
    • Table 6. Experimental data of OTB100 challenge ablation in deep network

      View table

      Table 6. Experimental data of OTB100 challenge ablation in deep network

      NameIPRIVBCOCCDEFSVLRFMOPROVMB
      Proposed-2Suc0.5220.5100.4790.5010.4900.5430.6040.5590.5290.4390.544
      Pre0.6770.6420.6190.6430.6470.7090.8720.6950.7000.5690.664
      Proposed-ASuc0.5110.4800.4580.4870.4620.5200.5540.5360.5220.4310.532
      Pre0.6590.6080.6140.6240.6220.6860.8120.6730.6910.5710.663
    • Table 7. Ablation experiment data

      View table

      Table 7. Ablation experiment data

      NameImproved VGG-NetImproved HourglassHourglassLayerPrecision rateSuccess rate
      SCSAtt---0.6870.529
      Proposed-1-10.6980.538
      Proposed-2-20.7240.560
      Proposed-3-30.7040.539
      Proposed-No-20.6940.530
    Tools

    Get Citation

    Copy Citation Text

    Yongqiang Wu, Baohua Zhang, Xiaoqi Lv, Yu Gu, Yueming Wang, Xin Liu, Yan Ren, Jianjun Li, Ming Zhang. Target Tracking Algorithm Based on Siamese Network of Feature Optimization Model[J]. Laser & Optoelectronics Progress, 2022, 59(12): 1215003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Apr. 25, 2021

    Accepted: Jun. 2, 2021

    Published Online: May. 23, 2022

    The Author Email: Baohua Zhang (zbh_wj2004@imust.cn)

    DOI:10.3788/LOP202259.1215003

    Topics