Journal of Inorganic Materials, Volume. 34, Issue 3, 236(2019)

First Principles High-throughput Research on Thermoelectric Materials: a Review

Xin LI, Li-Li XI, Jiong YANG, [in Chinese], [in Chinese], and [in Chinese]
Author Affiliations
  • Materials Genome Institute, Shanghai University, Shanghai 200444, China
  • show less
    References(53)

    [1] SEEBECK T J. On the magnetic polarization of metals and minerals by temperature differences[D]. Annals of Physics, 82, 253-286(1826).

    [2] PELTIER J C A. New experiments on the heat effects of electric currents[D]. Annals of Chemistry and Physics, 56, 371-386(1834).

    [3] LIAO J, TANG Y, ZHANG Q et al. Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration[D]. Energy & Environmental Science, 10, 956-963(2017).

    [4] BULMAN G E, SHEN B, SIIVOLA E et al[D], 89, 122117-1-3(2006).

    [5] SHAKOURI A, ZHANG Y. On-chip solid-state cooling for integrated circuits using thin-film microrefrigerators[D]. IEEE Transactions on Components and Packaging Technologies, 28, 65-69(2005).

    [6] HUANG Q, JIA F, WANG W et al. A new type of low power thermoelectric micro-generator fabricated by nanowire array thermoelectric material[D]. Microelectronic Engineering, 77, 223-229(2005).

    [7] LI JING-FENG. Macrofabrication technology of three-dimensional microdevices and their MEMS applications[D]. Journal of Inorganic Materials, 17, 657-664(2002).

    [8] CHEN H, HAUTIE G, JAIN A et al. Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations[D]. Journal of Materials Chemistry, 21, 17147-17153(2011).

    [9] ANGSTEN T, CHEN W, DE JONG M et al. Charting the complete elastic properties of inorganic crystalline compounds[D]. Sci. Data, 2, 150009-1-13(2015).

    [10] CURTAROLO S, HART G L W, TAYLOR R H. Guiding the experimental discovery of magnesium alloys[D]. Physical Review B, 84, 084101-1-17(2011).

    [11] EHRLACHER V, FISCHER C, HAUTIER G et al. Data mined ionic substitutions for the discovery of new compounds[D]. Inorg. Chem., 50, 656-663(2011).

    [12] CHEN W, HAUTIER G, POHLS JAN-HENDRIK et al. Understanding thermoelectric properties from high-throughput calculations: trends, insights, and comparisons with experiment[D]. Journal of Materials Chemistry C, 4, 4414-4426(2016).

    [13] LEVY O, PLATA J J, TOHER C et al. High-throughput computational screening of thermal conductivity, debye temperature,gruneisen parameter using a quasiharmonic debye model[D]. Physical Review B, 90, 174107-1-14(2014).

    [14] BLANCO M, FRANCISCO E, LUANA V. Gibbs: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic debye model[D]. Computer Physics Communications, 158, 57-72(2004).

    [15] SETYAWAN W, WANG S, WANG Z et al. Assessing the thermoelectric properties of sintered compounds via high-throughput ab-initio calculations[D]. Physical Review X, 1, 021012-1-8(2011).

    [16] CARRETE J, LI W, MINGO N et al. Finding unprecedentedly low-thermal-conductivity half-Heusler semiconductors via high-throughput materials modeling[D]. Physical Review X, 4, 011019-1-9(2014).

    [17] DOUGLAS R, GOLDSMID H. The use of semiconductors in thermoelectric refrigeration[D]. British Journal of Applied Physics, 5, 386-390(1954).

    [18] CHASMAR R, STRATTON R. The thermoelectric figure of merit and its relation to thermoelectric generators[D]. International Journal of Electronics, 7, 52-72(1959).

    [19] SLACK G A. Nonmetallic crystals with high thermal conductivity[D]. Journal of Physics & Chemistry of Solids, 34, 321-335(1973).

    [20] LI X, PAN S, XI L et al. Discovery of high performance thermoelectric chalcogenides through reliable high throughput material screening[D]. Journal of the American Chemical Society, 140, 10785-10793(2018).

    [21] QIU W, XI L, YANG J et al. On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory-experiment perspective[D]. npj Computational Materials, 2, 15015-1-17(2016).

    [22] GIBBS Z M, LI G, RICCI F et al. Effective mass and Fermi surface complexity factor from ab initio band structure calculations[D]. npj Computational Materials, 3, 8-1-7(2017).

    [23] BAI SHENG-QIANG, CHEN LI-DONG, XIONG ZHEN. Recent progress of thermoelectric nano-composites[D]. Journal of Inorganic Materials, 25, 561-568(2010).

    [24] GORAI P, ORTIZ B, YAN J et al. Material descriptors for predicting thermoelectric performance[D]. Energy & Environmental Science, 8, 983-994(2015).

    [25] ANDERSON ORSON L. A simplified method for calculating the debye temperature from elastic constants[D]. Journal of Physics and Chemistry of Solids, 24, 909-917(1963).

    [26] HILL RICHARD. The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society[C]. Section A, 65, 349-354(1952).

    [27] CHEN G, JIA T, ZHANG Y. Lattice thermal conductivity evaluated using elastic properties[D]. Physical Review B, 95, 155206-1-6(2017).

    [28] CLARKE D R. Materials selection guidelines for low thermal conductivity thermal barrier coatings[D]. Surface and Coatings Technology, 163, 67-74(2003).

    [29] CAHILL D G, POHL R. Lattice vibrations and heat transport in crystals and glasses[D]. Annual Review of Physical Chemistry, 39, 93-121(1988).

    [30] BRAUN P V, CAHILL D G, CHEN G et al. Nanoscale thermal transport. II.2003-2012[D]. Applied Physics Reviews, 1, 011305-1-45(2014).

    [31] HAUKE J, KOSSOWSKI T. Comparison of values of Pearson's and Spearman's correlation coefficients on the same sets of data[D]. Quaestiones Geographicae, 30, 87-93(2011).

    [32] LI H, WU T, YANG J et al. Evaluation of half-Heusler compounds as thermoelectric materials based on the calculated electrical transport properties[D]. Advanced Functional Materials, 18, 2880-2888(2008).

    [33] LI X, WANG Y, YING P et al. Hierarchical chemical bonds contributing to the intrinsically low thermal conductivity in α- MgAgSb thermoelectric materials[D]. Advanced Functional Materials, 27, 1604145-1-8(2017).

    [34] GE B, LI W, LIN S et al. Low sound velocity contributing to the high thermoelectric performance of Ag8SnSe6[D]. Advanced Science, 3, 1600196-1-7(2016).

    [35] AYDEMIR U, CHEN W, RICCI F et al. An ab initio electronic transport database for inorganic materials[D]. Sci. Data, 4, 170085-1-13(2017).

    [36] AYDEMIR U, HAUTIER G, ZHU H et al. Computational and experimental investigation of TmAgTe2 and XYZ2 compounds, a new group of thermoelectric materials identified by first-principles high-throughput screening[D]. Journal of Materials Chemistry C, 3, 10554-10565(2015).

    [37] AYDEMIR U, P HLS J, ZHU H et al. YCuTe2: a member of a new class of thermoelectric materials with cute4-based layered structure[D]. Journal of Materials Chemistry A, 4, 2461-2472(2016).

    [38] BERA C, NAVONE C, SOULIER M et al. Thermoelectric properties of nanostructured Si1-xGex and potential for further improvement[D]. Journal of Applied Physics, 108, 124306-1-8(2010).

    [39] LUDWIG A, WAMBACH M, ZIOLKOWSKI P et al. Application of high-throughput seebeck microprobe measurements on thermoelectric half-Heusler thin film combinatorial material libraries[D]. ACS Combinatorial Science, 20, 1-18(2018).

    [40] CARRETE J, MINGO N, WANG S D et al. Nanograined half-heusler semiconductors as advanced thermoelectrics: an ab initio high-throughput statistical study[D]. Advanced Functional Materials, 24, 7427-7432(2014).

    [41] LIAW A, WIENER M. Classification and regression by randomforest[D]. R News, 23, 18-22(2002).

    [42] JOLLIFFE I T. Principal component analysis[D]. Berlin, Heidelberg: Springer, 1094-1096(2011).

    [43] FURTHMULLER J, KRESSE G. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[D]. Physical Review B, 54, 11169-11186(1996).

    [44] CHOLIA S, JAIN A, ONG S P et al. The materials application programming interface (API): a simple, flexible and efficient API for materials data based on representational state transfer (rest) principles[D]. Computational Materials Science, 97, 209-215(2015).

    [45] JAIN A, ONG S P, RICHARDS W D et al. Python materials genomics (pymatgen): a robust, open-source python library for materials analysis[D]. Computational Materials Science, 68, 314-319(2013).

    [46] HAUTIER G, JAIN A, ONG S P et al. The materials project: a materials genome approach to accelerating materials innovation[D]. APL Materials, 1, 011002-1-11(2013).

    [47] COCOCCIONI M, MARIANETTI C A, ZHOU F et al. First-principles prediction of redox potentials in transition-metal compounds with LDA + U[D]. Physical Review B, 70, 235021-1-8(2004).

    [48] CEDER G, MAXISCH T, WANG L. A first-principles approach to studying the thermal stability of oxide cathode materials[D]. Chemistry of Materials, 19, 543-552(2007).

    [49] HAUTIER G, JAIN A, ONG S P et al. Thermal stabilities of delithiated olivine MPO4 (M = Fe, Mn) cathodes investigated using first principles calculations[D]. Electrochemistry Communications, 12, 427-430(2010).

    [50] ADAMS S, RAO R P. High power lithium ion battery materials by computational design. Physica Status Solidi a-Applications and[D]. Materials Science, 208, 1746-1753(2011).

    [51] BARONI S, BONINI N, GIANNOZZI P et al. Quantum espresso: a modular and open-source software project for quantum simulations of materials[D]. Journal of Physics-Condensed Matter, 21, 395502-1-19(2009).

    [52] ISAYEV O, OSES C, TOHER C et al. Universal fragment descriptors for predicting properties of inorganic crystals[D]. Nat. Commun., 8, 15679-1-12(2017).

    [53] LIYANAGE L, LYONS T E, SUPKA A R et al. AFLOWπ: a minimalist approach to high-throughput ab initio calculations including the generation of tight-binding hamiltonians[D]. Computational Materials Science, 136, 76-84(2017).

    Tools

    Get Citation

    Copy Citation Text

    Xin LI, Li-Li XI, Jiong YANG, [in Chinese], [in Chinese], [in Chinese]. First Principles High-throughput Research on Thermoelectric Materials: a Review[J]. Journal of Inorganic Materials, 2019, 34(3): 236

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jul. 16, 2018

    Accepted: --

    Published Online: Sep. 26, 2021

    The Author Email:

    DOI:10.15541/jim20180321

    Topics