Laser & Optoelectronics Progress, Volume. 60, Issue 10, 1010004(2023)

Hyperspectral On-Board Classification Algorithm Based on Multiscale Feature Extraction

Shuai Yuan, Yanan Sun*, Weifeng He, and Shikui Tu
Author Affiliations
  • School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    Figures & Tables(15)
    Spatial feature extraction method based on multiscale local maximum
    Classification maps of each algorithm on Indian Pines dataset. (a) Ground truth; (b) SVM; (c) RF; (d) CNN1D; (e) CNN2D; (f) HybridSN; (g) A2S2K-ResNet; (h) LBP-RF; (i) EMP-RF; (j) MF-RF
    Classification maps of each algorithm on Pavia University dataset. (a) Ground truth; (b) SVM; (c) RF; (d) CNN1D; (e) CNN2D; (f) HybridSN; (g) A2S2K-ResNet; (h) LBP-RF; (i) EMP-RF; (j) MF-RF
    Number of operations in the classification process of each algorithm. (a) Spectral algorithms; (b) one-stage spatial-spectral algorithms; (c) two-stage spatial-spectral algorithms
    Energy consumption of each algorithm in the classification process. (a) Spectral algorithms; (b) one-stage spatial-spectral algorithms; (c) two-stage spatial-spectral algorithms
    • Table 1. Statistics of operation type and number of operations of different algorithms

      View table

      Table 1. Statistics of operation type and number of operations of different algorithms

      AlgorithmNumber of operations
      ExpMulAddCmp
      Spectral algorithm(k:number of features,l:number of classes)SVMMkM+2MkM+l
      M:number of support vectors
      RFNDN
      D:average depth of trees,N:number of trees
      CNN1Dk-q+1qlk-q+1ql
      q:number of values in each filter

      One-stage spatial-spectral algorithm

      K:kernel size,

      Cin:number of input channels,

      Cout:number of output channels)

      Each convolution layerK2×Cin×CoutK2×Cin×Cout
      Two-stage spatial-spectral algorithm(k':number of features)LBP-RFNk'p+DN
      p:number of points in LBP,D/N:same as RF
      EMP-RFMulPCAAddPCA+N1mSi2+DN
      MulPCAAddPCA:number of Mul/Add in PCA,Si:size of each structuring element,m:number of structuring elements,D/N:same as RF
      MF-RFN2rmax+12+DN
      rmax:radius of the largest filter,D/N:same as RF
    • Table 2. Classification results on Indian Pines dataset

      View table

      Table 2. Classification results on Indian Pines dataset

      ClassSpectral algorithmOne-stage spatial-spectral algorithmTwo-stage spatial-spectral algorithm
      SVMRFCNN1DCNN2DHybridSNA2S2K-ResNetLBP-RFEMP-RFMF-RF
      Alfalfa81.82100.0087.50100.0080.49100.0095.2497.8391.84
      Corn-notil78.9173.5873.3890.2495.1097.7882.3494.7695.49
      Corn-mintill80.6975.9375.3090.8599.4698.6988.0095.1794.72
      Corn63.1459.6079.3187.9893.9096.2774.0583.8793.81
      Grass-pasture92.8388.7091.3993.9598.1699.3197.1794.0096.21
      Grass-trees85.2482.9894.5993.9899.2499.4488.1897.9095.45
      Grass-pasture-mowed83.87100.0095.00100.00100.0092.2290.00100.0089.66
      Hay-windrowed92.5986.3493.2598.7399.5399.3294.43100.0097.95
      Oats100.00100.00100.0090.9161.1184.65100.00100.00100.00
      Soybean-notill80.0572.2582.6591.1298.1797.5692.1692.9495.96
      Soybean-mintill77.9773.3769.9794.8099.0599.1386.4594.6896.16
      Soybean-clean77.2666.6085.7892.5890.2698.1087.7489.6492.95
      Wheat90.1390.9194.3495.7195.1499.20100.00100.0098.51
      Woods93.2593.0693.3196.4899.4799.2999.3799.2199.61
      Buildings-Grass-Trees-Drives73.8258.4371.7096.2195.9798.0097.4994.3398.21
      Stone-Steel-Towers98.7798.75100.0078.3890.4896.3092.8697.8998.78
      OA82.3477.6280.1193.4397.4498.5789.6695.1596.26
      AA84.3982.5386.7293.2493.4797.2091.5995.7695.96
      Kappa79.7574.2677.0192.5097.0898.3788.1494.4695.73
    • Table 3. Classification results on Pavia University dataset

      View table

      Table 3. Classification results on Pavia University dataset

      ClassSpectral algorithmOne-stage spatial-spectral algorithmTwo-stage spatial-spectral algorithm
      SVMRFCNN1DCNN2DHybridSNA2S2K-ResNetLBP-RFEMP-RFMF-RF
      Asphalt93.6092.0395.1598.75100.0099.7697.1299.4098.68
      Meadows96.1790.2298.1799.33100.0099.9598.6599.8299.30
      Gravel88.3886.5089.8297.9098.6899.4296.6999.8698.76
      Trees96.2596.2195.1096.1999.4599.8897.1099.9099.14
      Painted metal sheets99.0498.2399.6399.56100.0099.9799.48100.0099.85
      Bare Soil94.6592.9391.9499.26100.0099.9698.2699.9499.80
      Bitumen92.7386.1192.0592.81100.00100.0099.1399.7099.62
      Self-Blocking Bricks86.0082.0885.3397.4899.7099.0093.8699.0899.17
      Shadows100.00100.0099.3799.5594.60100.0099.7999.6899.79
      OA94.4190.5695.0798.5899.7299.8197.8199.7199.25
      AA94.0991.5994.0697.8799.1199.7797.7999.7199.35
      Kappa92.5687.2693.4898.1299.6399.7597.1099.6299.01
    • Table 4. Classification times of different algorithms on two datasets

      View table

      Table 4. Classification times of different algorithms on two datasets

      DatasetSpectral algorithmOne-stage spatial-spectral algorithmTwo-stage spatial-spectral algorithm
      SVMRFCNN1DCNN2DHybridSN

      A2S2K-

      ResNet

      LBP-RFEMP-RFMF-RF
      Indian Pines3.410.541.206.1172.3045.684.381.481.07
      Pavia University39.234.157.4359.56277.31117.4279.7012.6916.69
    • Table 5. Classification results on HyRANK dataset

      View table

      Table 5. Classification results on HyRANK dataset

      ClassRFL1+RFST+RFST+CORAL+RFMF-RF(17)ST+CORAL+MF-RF(52)
      Dense Urban Fabric5.7829.174.393.708.2115.49
      Mineral Extraction Sites0.0017.0716.2434.092.5033.33
      Non-Irrigated Arable Land25.0083.1445.7192.1866.6776.61
      Fruit Trees0.000.001.523.050.001.96
      Olive Groves2.2244.440.0081.400.0062.63
      Coniferous Forest100.0087.5064.6039.4985.7128.15
      Dense Sclerophyllous Vegetation67.5467.8868.4571.6866.5969.38
      Sparce Sclerophyllous Vegetation44.3337.4651.4349.7045.6551.60
      Sparcely Vegetated Areas9.3811.664.9917.289.2917.92
      Rocks and Sand9.4528.0056.9157.328.9358.40
      Water62.2895.15100.00100.0067.64100.00
      Coastal Water3.01100.00100.0099.342.1596.16
      OA46.6651.9955.4558.5948.5760.03
      AA27.4250.1242.8554.1030.2850.97
      Kappa33.1341.2745.9549.9235.5250.67
    • Table 6. Classification results of RF, CNN1D, and MF-RFs based on different feature values

      View table

      Table 6. Classification results of RF, CNN1D, and MF-RFs based on different feature values

      DatasetPSNR /dBRFCNN1DMF-RF(minimum)MF-RF(maximum)
      Indian Pines77.6280.1193.7696.26
      36.3877.1080.0793.2795.07
      26.3874.1476.1993.0494.67
      Pavia University90.5695.0799.0699.25
      35.0789.9493.6198.8099.28
      25.0785.7987.7797.9499.31
    • Table 7. Comparison of MF and different classifiers combinations

      View table

      Table 7. Comparison of MF and different classifiers combinations

      DatasetMF-SVMMF-FCMF-RF
      Indian PinesOA94.8979.6196.26
      AA95.6076.7295.96
      Kappa94.1776.6295.73
      Pavia UniversityOA99.4790.4699.25
      AA99.4989.1399.35
      Kappa99.2987.3399.01
    • Table 8. Comparison of different CNN feature extraction methods and RF combinations

      View table

      Table 8. Comparison of different CNN feature extraction methods and RF combinations

      DatasetCNN1D-RFCNN2D-RFMF-RF
      Indian PinesOA80.8892.5396.26
      AA87.7893.6595.96
      Kappa77.9391.4495.73

      Pavia

      University

      OA95.3797.9399.25
      AA95.1997.7999.35
      Kappa93.8397.2599.01
    • Table 9. Energy consumption of different operation types

      View table

      Table 9. Energy consumption of different operation types

      Operation typeData precision /bitEnergy cost /pJ
      Integer comparison80.008
      Floating-point addition320.9
      Floating-point multiplication323.7
      Floating-point exponentiation3238.975
    • Table 10. Energy consumption of each algorithm in classification process

      View table

      Table 10. Energy consumption of each algorithm in classification process

      Classification algorithmIndian PinesPavia University
      SVM2.8×1072.4×107
      RF1.0×1021.1×102
      CNN1D7.2×1053.1×105
      CNN2D1.8×1081.3×108
      HybridSN1.1×1091.1×109
      A2S2K-ResNet7.7×10103.8×1010
      LBP-RF1.1×1021.3×102
      EMP-RF5.4×1071.8×106
      MF-RF2.7×1021.0×103
    Tools

    Get Citation

    Copy Citation Text

    Shuai Yuan, Yanan Sun, Weifeng He, Shikui Tu. Hyperspectral On-Board Classification Algorithm Based on Multiscale Feature Extraction[J]. Laser & Optoelectronics Progress, 2023, 60(10): 1010004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Dec. 20, 2021

    Accepted: Feb. 8, 2022

    Published Online: May. 17, 2023

    The Author Email: Yanan Sun (sunyanan@sjtu.edu.cn)

    DOI:10.3788/LOP213289

    Topics