Journal of Infrared and Millimeter Waves, Volume. 42, Issue 5, 666(2023)

Research progress on first-principles calculations of interfacial charge transfer characteristics in InAs-based van der Waals heterojunctions

Tian-Tian CHENG1, Kun ZHANG2, Man LUO1,2、*, Yu-Xin MENG1, Yuan-Ze ZU1, Yi-Jin WANG1, Peng WANG2、**, and Chen-Hui YU1、***
Author Affiliations
  • 1Jiangsu Key Laboratory of ASIC Design,School of Information Science and Technology,Nantong University,Nantong 226019,China
  • 2State Key Laboratory of Infrared Physics,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
  • show less
    Figures & Tables(9)
    First-principles calculations theoretical framework and current research hotspots in InAs-based vdW heterojunctions
    (a)Crystal structure of bulk InAs[1]. Top and side view of geometric structures for(b-c)monolayer[62] and(d-e)bilayer[50] InAs with highlighted primitive unit cells
    InAs-based vdW stacking configurations. From top to bottom and left to right are(a)InTS/GR and AsTS/GR vdW heterostructures[30];(b)InAs/GaSb-ABII and InAs/GaSb-AAII vdW heterostructures[34];(c)InAs/InP-AA vdW heterostructures[32];(d)InAs/GaSb-AB5,InAs/GaAs-BB3 and InAs/InP-BB5 vdW heterostructures[31];(e)InAs/PbTe vdW heterostructures[36];(f)InTS(111)/GR vdW heterostructures[28];(g)GR/InTS(111)and GR/AsTS(1¯1¯1¯)vdW heterostructures[27];(h)MoS2/InTS(111)and MoS2/AsTS(1¯1¯1¯)vdW heterostructures[27];(i)MoS2/InTS(111)and MoS2/AsTS(111)vdW heterostructures[35];(j)GR/InAs and h-BN/InAs vdW heterostructures[29];(k)EuS/InAs(001)-C1,EuS/InAs(001)-C3 and EuS/InAs(001)-C4 vdW heterostructures[33];(l)GR/InAs(110),GNR/InAs(110),GR/Au/InAs(110)and GNR/Au/InAs(110)vdW heterostructures[26]
    Interfacial charge transfer characteristics in InAs/GR vdW system.(a)InTS/GR vdW heterostructures,magenta and cyan represent the charge accumulation and depletion[30];(b)GR/Au/InAs vdW heterostructures[26];(c)InAs/GR vdW heterostructures,yellow and blue represent the charge accumulation and depletion[37];(d)InTS/GR vdW heterostructures,blue and red represent the charge accumulation and depletion[28];(e)GR/InAs vdW heterostructures,green and yellow represent the charge accumulation and depletion[27]
    Band structures for(a-b)GR/InAs[26,27],(c)h-BN/InAs[29],(d)EuS/InAs[33] and(e)InAs/PbTe[36] vdW heterostructures;DOS for(f)MoS2/InTS and(g)MoS2/AsTS vdW heterostructures[35]
    (a)DOS for the composite vdW system with insertion of monolayer BN between InAs and metal(Pd and Pt)[37];(b)I-V characteristics of InAs/GR vdW heterostructure device[28];(c)Trends in band gap variation of InAs/GaSb vdW heterostructures under external electric field modulation[34];(d)The SBH(ϕp and ϕn)and band gap(ϕp + ϕn)of GR/InAs vdW heterostructures under external electric fields modulation[30]
    Optical absorption coefficient of(a)InAs/GaAs-BB3 and(b)InAs/GaSb-AB5[31],(c)InAs/GaSb-ABII and InAs/GaSb-AAII[34],(d)MoS2/InAs[27],(e)InAs/InP[32] vdW heterostructures;(f)For InAs/GaAs and InAs/GaSb vdW heterostructures,the PCE can be as high as 20.65% and over 18%,respectively[31]
    (a)Spin density across EuS/InAs vdW heterogeneous interface[73];(b)Spin polarization as a function of layer index in EuS/InAs vdW heterostructure[33]
    • Table 1. Computational details (vdW correction functionals and exchange-correlation functionals where GGA-PBE is omitted). Computational results for structural parameters and electronic properties (interlayer distance d (Å), charge transfer ΔQ (e) and band gap Eg (eV)) of energetically stable InAs-based vdW heterojunctions. The plus sign indicates the charge transfer from 2D layered materials to InAs materials, and the minus sign is the opposite. The upper labels i and d indicate the indirect and direct band gap, respectively.

      View table
      View in Article

      Table 1. Computational details (vdW correction functionals and exchange-correlation functionals where GGA-PBE is omitted). Computational results for structural parameters and electronic properties (interlayer distance d (Å), charge transfer ΔQ (e) and band gap Eg (eV)) of energetically stable InAs-based vdW heterojunctions. The plus sign indicates the charge transfer from 2D layered materials to InAs materials, and the minus sign is the opposite. The upper labels i and d indicate the indirect and direct band gap, respectively.

      Number of InAs layersEnergetically stable InAs-based vdW heterostructuresvdW correction functionalsExchange-correlation functionalsd(Å)ΔQ(e)Eg(eV)Ref.
      MonolayerInTS/GRDFT-D2HSE063.470+

      1.450i/ΓK

      1.500d/ΓΓ

      30
      AsTS/GRDFT-D2HSE063.500+

      1.340i/ΓK

      1.500d/ΓΓ

      30
      InAs/PbTeDFT-D3HSE063.46836
      InAs/InP-AADFT-D2HSE06+0.960i32
      InAs/InP-BB5DFT-D3HSE061.611i31
      InAs/GaAs-BB3DFT-D3HSE061.240i31
      InAs/GaSb-AB5DFT-D3HSE061.395i31
      InAs/GaSb-ABIIDFT-D33.738+0.1800.279i34
      InAs/GaSb-AAIIDFT-D33.876+0.1200.661d34
      BilayerGR/InAsDFT-D3Meta-GGA(SCAN)3.266+29
      h-BN/InAsDFT-D3Meta-GGA(SCAN)3.359+29
      MultilayerInTS(111)/GRDFT-D22.830-28
      GR/InTS(111)DFT-D22.820-1.91027
      GR/AsTS(1¯1¯1¯DFT-D23.310+0.29027
      GR/InAs(110)DFT-D23.200+0.01026
      GNR/InAs(110)DFT-D23.240+0.09626
      GR/Au/InAs(110)DFT-D23.080+0.01226
      GNR/Au/InAs(110)DFT-D22.560+0.08126
      MoS2/InTS(111)DFT-D22.640-2.06027
      MoS2/InTS(111)DFT-D22.720+0.50835
      MoS2/AsTS(111)DFT-D22.840-0.30535
      MoS2/AsTS(1¯1¯1¯DFT-D22.710-0.35027
      EuS/InAs(001)-C1T-SU(BO)2.600+33
      EuS/InAs(001)-C3T-SU(BO)2.400+33
      EuS/InAs(001)-C4T-SU(BO)2.600+33
    Tools

    Get Citation

    Copy Citation Text

    Tian-Tian CHENG, Kun ZHANG, Man LUO, Yu-Xin MENG, Yuan-Ze ZU, Yi-Jin WANG, Peng WANG, Chen-Hui YU. Research progress on first-principles calculations of interfacial charge transfer characteristics in InAs-based van der Waals heterojunctions[J]. Journal of Infrared and Millimeter Waves, 2023, 42(5): 666

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: May. 31, 2023

    Accepted: --

    Published Online: Aug. 30, 2023

    The Author Email: Man LUO (luoman@ntu.edu.cn), Peng WANG (w_peng@mail.sitp.ac.cn), Chen-Hui YU (ychyu@ntu.edu.cn)

    DOI:10.11972/j.issn.1001-9014.2023.05.012

    Topics