Optics and Precision Engineering, Volume. 31, Issue 2, 234(2023)
Parallel path and strong attention mechanism for building segmentation in remote sensing images
[1] DU J L, CHEN D, WANG R S et al. A novel framework for 2.5-D building contouring from large-scale residential scenes[J]. IEEE Transactions on Geoscience and Remote Sensing, 57, 4121-4145(2019).
[2] LI Z B, SHI W Z, WANG Q M et al. Extracting man-made objects from high spatial resolution remote sensing images via fast level set evolutions[J]. IEEE Transactions on Geoscience and Remote Sensing, 53, 883-899(2015).
[3] GAVANKAR N L, GHOSH S K. Automatic building footprint extraction from high-resolution satellite image using mathematical morphology[J]. European Journal of Remote Sensing, 51, 182-193(2018).
[4] [4] 4孙伟, 孙鹏翔, 黄恒, 等. 基于滑动窗口的影像中建筑物特征提取方法研究[J]. 传感技术学报, 2021, 34(8): 1096-1101. doi: 10.3969/j.issn.1004-1699.2021.08.014SUNW, SUNP X, HUANGH, et al. Research on building feature extraction method in image based on sliding window[J]. Chinese Journal of Sensors and Actuators, 2021, 34(8): 1096-1101.(in Chinese). doi: 10.3969/j.issn.1004-1699.2021.08.014
[5] SOHN G, DOWMAN I. Data fusion of high-resolution satellite imagery and LiDAR data for automatic building extraction[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 62, 43-63(2007).
[6] [6] 6徐胜军, 欧阳朴衍, 郭学源, 等. 多尺度特征融合空洞卷积 ResNet遥感图像建筑物分割[J]. 光学 精密工程, 2020, 28(7): 1588-1599. doi: 10.37188/ope.20202807.1588XUSH J, OUYANGP Y, GUOX Y, et al. Building segmentation in remote sensing image based on multiscale-feature fusion dilated convolution resnet[J]. Opt. Precision Eng., 2020, 28(7): 1588-1599.(in Chinese). doi: 10.37188/ope.20202807.1588
[7] [7] 7朱祺琪, 李真, 张亚男, 等. 全局局部细节感知条件随机场的高分辨率遥感影像建筑物提取[J]. 遥感学报, 2021, 25(7): 1422-1433.ZHUQ Q, LIZH, ZHANGY N, et al. Global-Local-Aware conditional random fields based building extraction for high spatial resolution remote sensing images[J]. National Remote Sensing Bulletin, 2021, 25(7): 1422-1433.(in Chinese)
[8] WU G M, SHAO X W, GUO Z L et al. Automatic building segmentation of aerial imagery using multi-constraint fully convolutional networks[J]. Remote Sensing, 10, 407(2018).
[9] JI S P, WEI S Q, LU M. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set[J]. IEEE Transactions on Geoscience and Remote Sensing, 57, 574-586(2019).
[10] LIU P H, LIU X P, LIU M X et al. Building footprint extraction from high-resolution images via spatial residual inception convolutional neural network[J]. Remote Sensing, 11, 830(2019).
[11] KANG W C, XIANG Y M, WANG F et al. EU-net: an efficient fully convolutional network for building extraction from optical remote sensing images[J]. Remote Sensing, 11, 2813(2019).
[12] SUN K, XIAO B, LIU D et al. Deep high-resolution representation learning for human pose estimation[C], 5686-5696(2020).
[13] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 2481-2495(2017).
[14] HONG S, HAN B. Learning deconvolution network for semantic segmentation[C], 1520-1528(2016).
[15] DIAKOGIANNIS F I, WALDNER F, CACCETTA P et al. ResUNet-a: a deep learning framework for semantic segmentation of remotely sensed data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 162, 94-114(2020).
[16] HE K M, ZHANG X Y, REN S Q et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37, 1904-1916(2015).
[17] ZHAO H S, SHI J P, QI X J et al. Pyramid scene parsing network[C], 6230-6239(2017).
[18] HE K M, ZHANG X Y, REN S Q et al. Deep residual learning for image recognition[C], 770-778(2016).
[19] LI H F, QIU K J, CHEN L et al. SCAttNet: semantic segmentation network with spatial and channel attention mechanism for high-resolution remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 18, 905-909(2021).
[20] MNIH V[M]. Machine Learning for Aerial Image Labeling(2013).
[21] LIU, LUO, HUANG, et al, LIU, LUO, HUANG, et al, LIU, LUO, HUANG, et al. DE-net: deep encoding network for building extraction from high-resolution remote sensing imagery[J]. Remote Sensing, 11, 2380(2019).
[22] GUO H N, SU X, TANG S K et al. Scale-robust deep-supervision network for mapping building footprints from high-resolution remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 10091-10100(2021).
[23] DENG W J, SHI Q, LI J. Attention-gate-based encoder-decoder network for automatical building extraction[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 2611-2620(2021).
[24] CHEN Z Y, LI D L, FAN W T et al. Self-attention in reconstruction bias U-net for semantic segmentation of building rooftops in optical remote sensing images[J]. Remote Sensing, 13, 2524(2021).
Get Citation
Copy Citation Text
Jianhua YANG, Hao ZHANG, Haiyang HUA. Parallel path and strong attention mechanism for building segmentation in remote sensing images[J]. Optics and Precision Engineering, 2023, 31(2): 234
Category: Information Sciences
Received: Mar. 1, 2022
Accepted: --
Published Online: Feb. 9, 2023
The Author Email: Haiyang HUA (c3i11@sia.cn)