Optics and Precision Engineering, Volume. 32, Issue 11, 1788(2024)
Detection of conductive multi-particles based on circular convolutional neural network
[1] HWANG H, KONG M, KIM K et al. Stretchable anisotropic conductive film (S-ACF) for electrical interfacing in high-resolution stretchable circuits[J]. Science Advances, 7(2021).
[2] [2] 贾磊. 面向超细间距玻璃覆晶封装的凸点植焊导电颗粒技术开发与研究[D]. 上海: 上海交通大学, 2014.JIAL. Development of Particle on Bump Method for Ultra-fine Pitch Chip on Glass Technology[D]. Shanghai: Shanghai Jiao Tong University, 2014. (in Chinese)
[3] GOYANES S. Conductive particles in anisotropic conductive films[J]. Polymer Science: Peer Review Journal, 3, 1-5(2022).
[4] [4] 范霆霄. 基于机器视觉的TFT-LCD面板芯片在线检测技术研究[D]. 南京: 东南大学, 2022.FANT X. Research on On-line Inspection Technology of TFT-LCD Panel Chip Based on Machine Vision[D].Nanjing: Southeast University, 2022. (in Chinese)
[5] [5] 夏衍,罗晨,周怡君,等.基于Swin Transformer轻量化的TFT-LCD面板缺陷分类算法[J].光学 精密工程,2023,31(22):3357-3370. doi: 10.37188/OPE.20233122.3357XIAY, LUOCH, ZHOUY J, et al. A lightweight deep learning model for TFT-LCD circuits defect classification based on swin transformer[J]. Opt. Precision Eng.,2023,31(22):3357-3370.(in Chinese). doi: 10.37188/OPE.20233122.3357
[6] LIN C S, HUANG K H, LIN T C et al. An automatic inspection method for the fracture conditions of anisotropic conductive film in the TFT-LCD assembly process[J]. International Journal of Optomechatronics, 5, 286-298(2011).
[7] ARKIN E, YADIKAR N, MUHTAR Y et al. A survey of object detection based on CNN and transformer[C], 99-108(2021).
[9] WANG Y Y, MA L, JIAN L H et al. Multi-scale deep adversarial network for particle detection in liquid crystal module[J]. Applied Soft Computing, 116, 108326(2022).
[10] WANG Y Y, MA L, JIANG H Q. Detecting conductive particles in TFT-LCD with U-MultiNet[C], 1-3(2019).
[11] WANG Y Y, MA L, JIU M Y et al. Detection of conductive particles in TFT-LCD circuit using generative adversarial networks[J]. IEEE Access, 8, 101338-101350(2020).
[12] LIU E Y, CHEN K P, XIANG Z Y et al. Conductive particle detection via deep learning for ACF bonding in TFT-LCD manufacturing[J]. Journal of Intelligent Manufacturing, 31, 1037-1049(2020).
[13] WANG Y Y, MA L, JIAN L H et al. Conductive particle detection via efficient encoder-decoder network[J]. Journal of Intelligent Manufacturing, 34, 3563-3577(2023).
[14] TAO X, MA W Z, LU Z F et al. Conductive particle detection for chip on glass using convolutional neural network[J]. IEEE Transactions on Instrumentation and Measurement, 70, 3519310(2021).
[15] LUO C, FAN T X, XIA Y et al. Deep learning-based conductive particle inspection for TFT-LCDs inspired by parametric space envelope[J]. Journal of Intelligent Manufacturing, 1, 1-11(2023).
[16] LI T Y, ZHANG F, YANG H B et al. A novel method for LCD module alignment and particle detection in anisotropic conductive film bonding[J]. Machines, 11, 49(2023).
[17] DAI J F, QI H Z, XIONG Y W et al. Deformable convolutional networks[C], 764-773(2017).
[18] LI W, LIU K, ZHANG L Z et al. Object detection based on an adaptive attention mechanism[J]. Scientific Reports, 10, 11307(2020).
[19] OSTHUS D, WEAVER B P, CASLETON E M et al. On gauge repeatability and reproducibility studies for counts[J]. Quality Engineering, 33, 641-654(2021).
[20] WANG Z, BOVIK A C, SHEIKH H R et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 13, 600-612(2004).
Get Citation
Copy Citation Text
Zilong LIU, Chen LUO, Yijun ZHOU, Lei JIA. Detection of conductive multi-particles based on circular convolutional neural network[J]. Optics and Precision Engineering, 2024, 32(11): 1788
Category:
Received: Dec. 25, 2023
Accepted: --
Published Online: Aug. 8, 2024
The Author Email: Chen LUO (chenluo@seu.edu.cn)