Chinese Journal of Lasers, Volume. 36, Issue 7, 1605(2009)
High Average Power Laser Diode Pumped Solid-State Laser
[1] [1] Zhou Shouhuan. Solid State Laser Technology[J]. Laser & Infrared, 1994, 24(4): 18~22
[3] [3] H. Bruesselbach, D. S. Sumida. A 2.65-kW YbYAG single-rod laser[J]. IEEE J. Sel. Top. Quantum Electron., 2005, 11(3): 600~603
[4] [4] S. Lee, M. Yun, B. H. Cha et al.. Stability analysis of a diode-pumped, thermal birefringence-compensated two-rod Nd:YAG laser with 770-W output power[J]. Appl. Opt., 2002, 41(27): 5625~5631
[5] [5] A. Takada, Y. Akiyama, T. Takase et al.. High-efficiency operation of diode-pumped high-power Nd:YAG rod laser[C]. SPIE, 2000, 4065: 782~789
[6] [6] N. Pavel, Y. Hirano, S. Yamamoto et al.. Improved pump-beam distribution in a diode side-pumped solid-state laser with a highly diffuse, cross-axis beam delivery system[J]. Appl. Opt., 2000, 39(6): 986~992
[7] [7] S. Fujikawa, K. Furuta, K. Yasui. 28% electrical-efficiency operation of a diode-side-pumped Nd:YAG rod laser[J]. Opt. Lett., 2001, 26(9): 602~604
[8] [8] S. Konno, T. Kojima, S. Fujikawa et al.. High-brightness 138-W green laser based on an intracavity-frequency-doubled diode-side-pumped Q-switched Nd:YAG laser[J]. Opt. Lett., 2000, 25(2): 105~107
[9] [9] Y. Akiyama, M. Sasaki, H. Yuasa et al.. Efficient 10 kW diode-pumped Nd:YAG rod laser[J]. Advanced Solid-State Lasers, 2001, 33(4): 46~49
[10] [10] A. Parker. High-power green lasers open up precision machining[R]. Science & Technology Review(Lawrence Livermore National Laboratory), 1999, October 8~9
[11] [11] D. J. Ripin, J. R. Ochoa, R. L. Aggarwal et al.. 165-W cryogenically cooled YbYAG laser[J]. Opt. Lett., 2004, 29(18): 2154~2156
[12] [12] W. A. Clarkson, N. S. Felgate, D. C. Hanna. Simple method for reducing the depolarization loss resulting from thermally induced birefringence in solid-state lasers[J]. Opt. Lett., 1999, 24(12): 820~822
[13] [13] H. Yuasa, Y. Akikama, H. Takada et al.. High-power 10-kW all-solid-state rod-type laser[J]. Review of Laser Engineering, 2003, 31(8): 508~512
[14] [14] Y. Hirano, Y. Koyata, S. Yamamoto et al.. 208-W TEM00 operation of a diode-pumped Nd:YAG rod laser[J]. Opt. Lett., 1999, 24(10): 679~681
[15] [15] S. Garnov, V. Mikhailov, R. Serov et al.. Study of the possibility of developing a multichannel-diode-pumped multikilowatt solid-state laser based on optically dense active media[J]. IEEE J. Quantum Electron., 2007, 37(10): 910~915
[16] [16] C. Stewen, K. Contag, M. Larionov et al.. A 1-kW CW thin disc laser[J]. IEEE J. Sel. Top. Quantum Electron., 2000, 6(4): 650~657
[17] [17] J. A. C. Terry, W. A. Clarkson. Solid State Laser Technologies and Femtosecond Phenomena[M]. London:Bellingham, Washington: SPIE, 2004
[18] [18] J. Vetrovec, R. S. Shah, T. Endo et al.. Progress in the development of solid-state disk laser[C]. SPIE, 2004, 5332: 235~243
[19] [19] J. Vetrovec, A. Koumvakalis, R. Shah. Solid state disk laser for high-average power[C]. SPIE, 2003, 5120: 731~734
[20] [20] J. Vetrovec, A. Koumvakalis, R. D. Shah et al.. Development of solid-state disk laser for high-average power[C]. SPIE, 2003, 4968: 54~64
[21] [21] J. Vetrovec. Ultrahigh-average power solid-state laser[C]. SPIE, 2002, 4760: 491~505
[22] [22] A. Giesen. Thin disk lasers-power scalability and beam quality[J]. Laser Technik J., 2005, 2(2): 42~45
[23] [23] A. Giesen. Results and scaling laws of thin-disk lasers[C]. SPIE, 2004, 5332: 212~227
[24] [24] H. Injeyan, C. S. Hoefer, S. P. Palese. End pumped zig-zag slab laser gain medium[P]. 2001, US6, 268, 956 B1
[25] [25] J. P. Machan, W. H. L. Jr, J. Zamel et al.. 5.4 kW diode-pumped, 2.4 × diffraction-limited Nd:YAG laser for material processing[J]. Advanced Solid-State Lasers, 2002, 68: 549~551
[26] [26] Y. Nishikawa. Slab-shaped 10 kW all-solid-state laser[J]. Review of Laser Engineering, 2003, 31(8): 513~518
[27] [27] T. S. Rutherford, W. M. Tulloch, S. Sinha et al.. Yb:YAG and Nd:YAG edge-pumped slab lasers[J]. Opt. Lett., 2001, 26(13): 986~988
[28] [28] G. D. Goodno, H. Komine, S. J. McNaught et al.. Coherent combination of high-power, zigzag slab lasers[J]. Opt. Lett., 2006, 31(9): 1247~1249
[29] [29] G. D. Goodno, S. Palese, J. Harkenrider et al.. YbYAG power oscillator with high brightness and linear polarization[J]. Opt. Lett., 2001, 26(21): 1672~1674
[30] [30] S. Redmond, S. McNaught, J. Zamel et al.. 15 kW near-diffraction-limited single-frequency Nd:YAG laser[C]. Conference on Lasers and Electro-Optics(CLEO), 2007: 1~2
[31] [31] J. Marmo, H. Injeyan, H. Komine et al.. Joint high power solid state laser program advancements at Northrop Grumman[C]. SPIE, 2009, 7195: 719507
[32] [32] H. Injeyan, G. Goodno, H. Komine et al.. High power scalable Nd:YAG laser architecture[C]. Conference on Lasers and Electro-Optics(CLEO), 2005, 1165
[33] [33] B. Bishop. Northrop Grumman Scales New Heights in Electric Laser Power, Achieves 100 Kilowatts From a Solid-State Laser[J]. http://www.irconnect.com/noc/press/pages/ news_releases html d =161575, March 18, 2009
[34] [34] J. Limpert, T. Schreiber, A. Liem et al.. Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation[J]. Opt. Express, 2003, 11(22): 2982~2990
[35] [35] J. J. Larsen, G. Vienne. Side pumping of double-clad photonic crystal fibers[J]. Opt. Lett., 2004, 29(5): 436~438
[36] [36] T. Loftus, A. Liu, P. Hoffman et al.. 258W of spectrally beam combined power with near-diffraction limited beam quality[C]. SPIE, 2006, 6102: 61020S1~S8
[37] [37] J. Abderegg, S. J. Brosnan, M. E. Weber et al.. 8-watt coherently-phased 4-element fiber array[C]. SPIE, 2003, 4974: 1~6
[38] [38] M. L. Minden, H. W. Bruesselbach, J. L. Rogers et al.. Self-organized coherence in fiber laser arrays[C]. SPIE, 2004, 5335: 89~97
[39] [39] A. Shirakawa, K. Matsuo, K. Ueda. Fiber laser coherent array for power scaling of single-mode fiber laser[C]. SPIE, 2004, 5662: 482~487
[40] [40] Y. Zhou, L. Liu, C. Etson et al.. Phase locking of a two-dimensional laser array by controlling the far-field pattern[J]. Appl. Phys. Lett., 2004, 84(16): 3025~3027
[41] [41] A. Liu, R. Mead, T. Vatter et al.. Spectral beam combining of high-power fiber lasers[C]. SPIE, 2004, 5335: 81~88
[42] [42] J. Limpert, T. Schreiber, A. Tünnermann. Fiber based high power laser systems[J]. http://www.rp-photonics.com/highpowerfiberlasers.pdf, 2005
[43] [43] Y. Jeong, J. Sahu, D. Payne et al.. Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power[J]. Electron. Lett., 2004, 40(8): 470~472
[44] [44] IPG. IPG Photonics Achieves Record Two Kilowatt[R].2005
[45] [45] IPG. World Premiere of Super High Power Fiber Laser at Opening of[R].2005
[46] [46] IPG. IPG Photonics Corporation[R].2008. 11
[47] [47] IPG. High Power Fiber Lasers for Industrial Applications[R].2009
[48] [48] http://investor.ipgphotonics.com/releases.cfm
[49] [49] G. Bonati, H. Voelckel, T. Gabler et al.. 1.53 kW from a single Yb-doped photonic crystal fiber laser[J]. Photonics West, San Jose, Late Breaking Developments, Session.
[50] [50] C. B. Dane. High-average-power, solid-state laser with high pulse energy and low beam divergence[R]. Science & Technology Review(Lawrence Livermore National Laboratory), 1995, September: 3
[51] [51] M. D. Rotter, C. B. Dane, S. Fochs et al.. Solid-state heat-capacity lasers: good candidates for the marketplace[J]. Photonics Spectra, 2004, 38(8): 44~56
[52] [52] J. Vetrovec. Solid-state high-energy laser[C]. SPIE, 2002, 4632: 104~114
[53] [53] R. P. Abbott, C. D. Boley, S. N. Fochs et al.. High-power solid-state laser: lethality testing and modeling[R]. Lawrence Livermore National Laboratory, 25th Army Science Conference, UCRL-CONF-224732, 2006
[54] [54] C. B. Dane, S. Fochs, J. Gwo et al.. Solid-state heat-capacity laser for defense[R]. Laser science and technology program update 2002. Lawrence Livermore National Laboratory, UCRL-ID-134972-01, 2003: 16~18
[55] [55] R. M. Yamamoto, J. M. Parker, K. L. Allen et al.. Evolution of a solid state laser[C]. SPIE, 2007, 6552: 655205
[56] [56] R. M. Yamamoto, K. L. Allen, R. W. Allmon et al.. A solid state laser for the battlefield[R].Lawrence Livermore National Laboratory, 25th Army Science Conference, UCRL-CONF-225230, 2006
[57] [57] G. Mingxiu, L. Jindong, L. Wenqiang et al.. A kilowatt diode-pumped solid-state heat-capacity double-slab laser[J]. Chin. Phys. Lett., 2006, 23(9): 2530~2533
[59] [59] Yan Xin, Wang Zhiyong, Bao Yong et al.. Novel laser drilling machine for cartridge[J]. Infrared and Laser Engineering, 2007, 36(S1): 380~383
[60] [60] F. Guoying, O. Qunfei, C. Jianguo et al.. Simulation of the thermal effects in diode-pumped rod laser[C]. SPIE, 2004, 5178: 43~48
[62] [62] O. Qunfei, C. Jianguo, Z. Wenhui et al.. Thermal distortions of optics irradiated by periodically repeated short pulses[C]. SPIE, 2005, 6028: 562~568
[63] [63] O. Qunfei, C. Jianguo, Z. Wenhui et al.. Phase distortions due to temperature rise of optics irradiated by periodically repeated short pulses[J]. Optics and Laser Technology, 2006, 38(8): 631~635
[64] [64] Zhao Hong, Zhou Shouhuan, Zhu Chen et al.. High power fiber laser with out power exceeding 1.2 kW[J]. Laser & Infrared, 2006, 36(10): 930~930
Get Citation
Copy Citation Text
Zhou Shouhuan, Zhao Hong, Tang Xiaojun. High Average Power Laser Diode Pumped Solid-State Laser[J]. Chinese Journal of Lasers, 2009, 36(7): 1605