[1] P. Y. Chiou, A. T. Ohta, M. C. Wu. Massively parallel manipulation of single cells and microparticles using optical images. Nature, 436, 370-372(2005).
[2] M. C. Wu. Optoelectronic tweezers. Nat. Photonics, 5, 322-324(2011).
[3] M. Woerdemann, C. Alpmann, M. Esseling, C. Denz. Advanced optical trapping by complex beam shaping. Laser Photon. Rev., 7, 839-854(2013).
[4] Y. Huang, Z. Liang, M. Alsoraya, J. Guo, D. Fan. Light-gated manipulation of micro/nanoparticles in electric fields. Adv. Intell. Syst., 2, 1900127(2020).
[5] H. Hwang, J. K. Park. Optoelectrofluidic platforms for chemistry and biology. Lab Chip, 11, 33-47(2011).
[6] S. Zhang, Y. Liu, J. Juvert, P. Tian, J. C. Navaro, J. M. Cooper, S. L. Neale. Use of optoelectronic tweezers in manufacturing accurate solder bead positioning. Appl. Phys. Lett., 109, 221110(2016).
[7] S. Zhang, J. Juvert, J. M. Cooper, S. L. Neale. Manipulating and assembling metallic beads with optoelectronic tweezers. Sci. Rep., 6, 32840(2016).
[8] S. Zhang, Y. Zhai, R. Peng, M. Shayegannia, A. G. Flood, J. Qu, X. Liu, N. P. Kherani, A. R. Wheeler. Assembly of topographical micropatterns with optoelectronic tweezers. Adv. Opt. Mater., 7, 1900669(2019).
[9] S. Zhang, E. Y. Scott, J. Singh, Y. Chen, Y. Zhang, M. Elsayed, M. D. Chamberlain, N. Shakiba, K. Adams, S. Yu, C. M. Morshead, P. W. Zandstra, A. R. Wheeler. The optoelectronic microrobot: a versatile toolbox for micromanipulation. Proc. Natl. Acad. Sci. USA, 116, 14823-14828(2019).
[10] D. Han, J. K. Park. Optoelectrofluidic enhanced immunoreaction based on optically-induced dynamic AC electroosmosis. Lab Chip, 16, 1189-1196(2016).
[11] D. Han, J. K. Park. Microarray-integrated optoelectrofluidic immunoassay system. Biomicrofluidics, 10, 034106(2016).
[12] Y. H. Lin, C. M. Chang, G. B. Lee. Manipulation of single DNA molecules by using optically projected images. Opt. Express, 17, 15318-15329(2009).
[13] Y. Zhang, J. Zhao, H. Yu, P. Li, W. Liang, Z. Liu, G. B. Lee, L. Liu, W. J. Li, Z. Wang. Detection and isolation of free cancer cells from ascites and peritoneal lavages using optically induced electrokinetics (OEK). Sci. Adv., 6, eaba9628(2020).
[14] S. Zhang, N. Shakiba, Y. Chen, Y. Zhang, P. Tian, J. Singh, M. D. Chamberlain, M. Satkauskas, A. G. Flood, N. P. Kherani, S. Yu, P. W. Zandstra, A. R. Wheeler. Patterned optoelectronic tweezers: a new scheme for selecting, moving, and storing dielectric particles and cells. Small, 14, 1803342(2018).
[15] S. Xie, X. Wang, N. Jiao, S. Tung, L. Liu. Programmable micrometer-sized motor array based on live cells. Lab Chip, 17, 2046-2053(2017).
[16] A. T. Ohta, M. Garcia, J. K. Valley, L. Banie, H. Y. Hsu, A. Jamshidi, S. L. Neale, T. Lue, M. C. Wu. Motile and non-motile sperm diagnostic manipulation using optoelectronic tweezers. Lab Chip, 10, 3213-3217(2010).
[17] S. B. Huang, M. H. Wu, Y. H. Lin, C. H. Hsieh, C. L. Yang, H. C. Lin, C. P. Tseng, G. B. Lee. High-purity and label-free isolation of circulating tumor cells (CTCs) in a microfluidic platform by using optically-induced-dielectrophoretic (ODEP) force. Lab Chip, 13, 1371-1383(2013).
[18] L. Y. Ke, Z. K. Kuo, Y. S. Chen, T. Y. Yeh, M. Dong, H. W. Tseng, C. H. Liu. Cancer immunotherapy μ-environment LabChip: taking advantage of optoelectronic tweezers. Lab Chip, 18, 106-114(2018).
[19] Y. Yang, Y. Mao, K. S. Shin, C. O. Chui, P. Y. Chiou. Self-locking optoelectronic tweezers for single-cell and microparticle manipulation across a large area in high conductivity media. Sci. Rep., 6, 22630(2016).
[20] A. H. Jeorrett, S. L. Neale, D. Massoubre, E. Gu, R. K. Henderson, O. Millington, K. Mathieson, M. D. Dawson. Optoelectronic tweezers system for single cell manipulation and fluorescence imaging of live immune cells. Opt. Express, 22, 1372-1380(2014).
[21] A. Jamshidi, S. L. Neale, K. Yu, P. J. Pauzauskie, P. J. Schuck, J. K. Valley, H.-Y. Hsu, A. T. Ohta, M. C. Wu. Nanopen: dynamic, low-power, and light-actuated patterning of nanoparticles. Nano Lett., 9, 2921-2925(2009).
[22] S. J. Lin, S. H. Hung, J. Y. Jeng, T. F. Guo, G. B. Lee. Manipulation of micro-particles by flexible polymer-based optically-induced dielectrophoretic devices. Opt. Express, 20, 583-592(2012).
[23] M. B. Lim, R. G. Felsted, X. Zhou, B. E. Smith, P. J. Pauzauskie. Patterning of graphene oxide with optoelectronic tweezers. Appl. Phys. Lett., 113, 031106(2018).
[24] S. Liang, Y. Cao, Y. Dai, F. Wang, X. Bai, B. Song, C. Zhang, C. Gan, F. Arai, L. Feng. A versatile optoelectronic tweezer system for micro-objects manipulation: transportation, patterning, sorting, rotating and storage. Micromachines, 12, 271(2021).
[25] S. Zhang, W. Li, M. Elsayed, P. Tian, A. W. Clark, A. R. Wheeler, S. L. Neale. Size-scaling effects for microparticles and cells manipulated by optoelectronic tweezers. Opt. Lett., 44, 4171-4174(2019).
[26] M. A. Zaman, P. Padhy, Y. T. Cheng, L. Galambos, L. Hesselink. Optoelectronic tweezers with a non-uniform background field. Appl. Phys. Lett., 117, 171102(2020).
[27] A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, M. C. Wu. Dynamic manipulation and separation of individual semiconducting and metallic nanowires. Nat. Photonics, 2, 86-89(2008).
[28] Y. H. Lin, K. S. Ho, C. T. Yang, J. H. Wang, C. S. Lai. A highly flexible platform for nanowire sensor assembly using a combination of optically induced and conventional dielectrophoresis. Opt. Express, 22, 13811-13824(2014).
[29] H. Hwang, D. Han, Y. J. Oh, Y. K. Cho, K. H. Jeong, J. K. Park. In situ dynamic measurements of the enhanced SERS signal using an optoelectrofluidic SERS platform. Lab Chip, 11, 2518-2525(2011).
[30] M. B. Lim, J. L. Hanson, L. Vandsburger, P. B. Roder, X. Zhou, B. E. Smith, F. S. Ohuchi, P. J. Pauzauskie. Copper-and chloride-mediated synthesis and optoelectronic trapping of ultra-high aspect ratio palladium nanowires. J. Mater. Chem. A, 6, 5644-5651(2018).
[31] S. Zhang, Y. Liu, Y. Qian, W. Li, J. Juvert, P. Tian, J. C. Navarro, A. W. Clark, E. Gu, M. D. Dawson, J. M. Cooper, S. L. Neale. Manufacturing with light-micro-assembly of opto-electronic microstructures. Opt. Express, 25, 28838-28850(2017).
[32] M. C. Tien, A. T. Ohta, K. Yu, S. L. Neale, M. C. Wu. Heterogeneous integration of InGaAsP microdisk laser on a silicon platform using optofluidic assembly. Appl. Phys. A, 95, 967-972(2009).
[33] J. Juvert, S. Zhang, I. Eddie, C. J. Mitchell, G. T. Reed, J. S. Wilkinson, A. Kelly, S. L. Neale. Micromanipulation of InP lasers with optoelectronic tweezers for integration on a photonic platform. Opt. Express, 24, 18163-18175(2016).
[35] W. Liang, S. Wang, Z. Dong, G. B. Lee, W. J. Li. Optical spectrum and electric field waveform dependent optically-induced dielectrophoretic (ODEP) micro-manipulation. Micromachines, 3, 492-508(2012).
[36] J. K. Valley, A. Jamshidi, A. T. Ohta, H. Y. Hsu, M. C. Wu. Operational regimes and physics present in optoelectronic tweezers. J. Microelectromech. Syst., 17, 342-350(2008).
[37] R. Pethig. Dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics, 4, 022811(2010).
[38] S. L. Neale, M. Mazilu, J. I. B. Wilson, K. Dholakia, T. F. Krauss. The resolution of optical traps created by light induced dielectrophoresis (LIDEP). Opt. Express, 15, 12619-12626(2007).
[39] N. Liu, Y. Lin, Y. Peng, L. Xin, T. Yue, Y. Liu, C. Ru, S. Xie, L. Dong, H. Pu, H. Chen, W. J. Li, Y. Sun. Automated parallel electrical characterization of cells using optically-induced dielectrophoresis. IEEE Trans. Autom. Sci. Eng., 17, 1084-1092(2020).
[40] S. Zhang, A. Nikitina, Y. Chen, Y. Zhang, L. Liu, A. G. Flood, J. Juvert, M. D. Chamberlain, N. P. Kherani, S. L. Neale, A. R. Wheeler. Escape from an optoelectronic tweezer trap: experimental results and simulations. Opt. Express, 26, 5300-5309(2018).
[41] W. Liang, L. Liu, H. Zhang, Y. Wang, W. J. Li. Optoelectrokinetics-based microfluidic platform for bioapplications: a review of recent advances. Biomicrofluidics, 13, 051502(2019).
[42] Y. H. Lin, G. B. Lee. Optically induced flow cytometry for continuous microparticle counting and sorting. Biosens. Bioelectron., 24, 572-578(2008).
[43] Y. S. Chen, C. P. K. Lai, C. Chen, G. B. Lee. Isolation and recovery of extracellular vesicles using optically-induced dielectrophoresis on an integrated microfluidic platform. Lab Chip, 21, 1475-1483(2021).
[44] C. Witte, J. Reboud, J. M. Cooper, S. L. Neale. Channel integrated optoelectronic tweezer chip for microfluidic particle manipulation. J. Micromech. Microeng., 30, 045004(2020).
[45] T. K. Chiu, W. P. Chou, S. B. Huang, H. M. Wang, Y. C. Lin, C. H. Hsieh, M. H. Wu. Application of optically-induced-dielectrophoresis in microfluidic system for purification of circulating tumour cells for gene expression analysis-cancer cell line model. Sci. Rep., 6, 32851(2016).
[46] W. P. Chou, H. M. Wang, J. H. Chang, T. K. Chiu, C. H. Hsieh, C. J. Liao, M. H. Wu. The utilization of optically-induced-dielectrophoresis (ODEP)-based virtual cell filters in a microfluidic system for continuous isolation and purification of circulating tumour cells (CTCs) based on their size characteristics. Sens. Actuators B Chem., 241, 245-254(2017).
[47] S. Zhang, M. Elsayed, R. Peng, Y. Chen, Y. Zhang, J. Peng, W. Li, M. D. Chamberlain, A. Nikitina, S. Yu, X. Liu, S. L. Neale, A. R. Wheeler. Reconfigurable multi-component micromachines driven by optoelectronic tweezers. Nat. Commun., 12, 5349(2021).