Laser & Optoelectronics Progress, Volume. 58, Issue 14, 1410007(2021)

Deep Convolution Neural Network Method for Skew Angle Detection in Text Images

Congzhou Guo1、*, Ke Li1, Yikun Zhu1, Xiaochong Tong2, and Xiwen Wang1
Author Affiliations
  • 1Department of Basic, Information Engineering University, Zhengzhou, Henan 450001, China
  • 2School of Surveying and Mapping, Information Engineering University, Zhengzhou, Henan 450001, China
  • show less
    Figures & Tables(11)
    DCNN structure of text image tilt angle class detection
    Two classification detection of text image skew angle class
    The example 1 of text image quality skew angle multi-stage and multi classification detection
    The example 2 of text image quality skew angle multi-stage and multi classification detection
    The example 3 of text image quality skew angle multi-stage and multi classification detection
    Text image simulation data with different skew categories
    • Table 1. Tilt angle class and angle range value

      View table

      Table 1. Tilt angle class and angle range value

      Tilt classificationTilt angle rangeTilt classificationTilt angle range
      L1[0, 30°)L7[0, -30°)
      L2[30°, 60°)L8[-30°, -60°)
      L3[60°, 90°)L9[-60°, -90°)
      L4[90°, 120°)L10[-90°, -120°)
      L5[120°, 150°)L11[-120°, -150°)
      L6[150°, 180°)L12[-150°, -180°)
    • Table 2. Network parameters

      View table

      Table 2. Network parameters

      Layer nameFilter sizeStridePadding
      Conv13×3×1×6421
      Conv23×3×64×6421
      Max Pooling2×220
      Conv33×3×64×6421
      Max Pooling2×220
      Conv43×3×64×6421
      Max Pooling2×220
      Conv53×3×64×6421
      Conv63×3×64×1021
    • Table 3. Detection results of text image tilt angle classification (12 classifications)

      View table

      Table 3. Detection results of text image tilt angle classification (12 classifications)

      Performance indexOne stage structureMultistage structure
      (Fig.2)(Fig.3)(Fig.4)(Fig.5)
      Accuracy0.9820.9550.9620.956
      Recall0.9760.9660.9540.962
      Precision0.9820.9550.9620.956
      F1_Score0.9780.9650.9510.958
      Train time /h4.3219.6549.4619.622
      Test time /ms7.1398.1128.1218.110
    • Table 4. Detection results of text image tilt angle classification (24 classifications)

      View table

      Table 4. Detection results of text image tilt angle classification (24 classifications)

      Performance indexMultistage structure
      (Fig.2’)(Fig.3’)(Fig.4’)
      Accuracy0.9450.9430.949
      Recall0.9460.9490.952
      Precision0.9340.9360.937
      F1_Score0.9400.9420.944
      Train time/h16.78516.76816.642
      Test time/ms13.60913.43413.536
    • Table 5. Comparison of text image recognition before and after skew correction

      View table

      Table 5. Comparison of text image recognition before and after skew correction

      Tilt angle classificationPrecision of ASTERPrecision of MORANPrecision of CRNN
      Before tilt correctionAfter tilt correctionBefore tilt correctionAfter tilt correctionBefore tilt correctionAfter tilt correction
      L10.9660.9740.977
      L20.4340.9640.4540.9650.4640.960
      L30.1710.9610.1610.9660.1810.956
      L40.2050.9630.0150.9530.1150.957
      L500.95900.95900.959
      L600.95900.95800.966
      L70.8070.9640.8170.9470.8370.959
      L80.2170.9580.2470.9580.2470.951
      L90.0150.9460.0440.9510.0550.966
      L1000.96600.94200.958
      L1100.96200.94500.957
      L1200.95500.96100.941
      L1300.96600.97400.977
    Tools

    Get Citation

    Copy Citation Text

    Congzhou Guo, Ke Li, Yikun Zhu, Xiaochong Tong, Xiwen Wang. Deep Convolution Neural Network Method for Skew Angle Detection in Text Images[J]. Laser & Optoelectronics Progress, 2021, 58(14): 1410007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Sep. 22, 2020

    Accepted: Nov. 14, 2020

    Published Online: Jun. 30, 2021

    The Author Email: Congzhou Guo (czguo0618@sina.cn)

    DOI:10.3788/LOP202158.1410007

    Topics