Acta Photonica Sinica, Volume. 51, Issue 11, 1110003(2022)

Remote Sensing Image Denoising Algorithm with Multi-receptive Field Feature Fusion and Enhancement

Xueyuan GUAN, Wei HU*, and Heng FU
Author Affiliations
  • State Key Laboratory of Transient Physics,Nanjing University of Science and Technology,Nanjing 210094,China
  • show less
    References(25)

    [1] WANG Y, QI Q, LIU Y et al. Unsupervised segmentation parameter selection using the local spatial statistics for remote sensing image segmentation[J]. International Journal of Applied Earth Observation and Geoinformation, 81, 98-109(2019).

    [2] YUAN Qiangqiang, ZHANG Qiang, LI Jie et al. Hyperspectral image denoising employing a spatial–spectral deep residual convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 57, 1205-1218(2018).

    [3] CHEN Boyang, FENG Xuan, WU Ronghua et al. Adaptive wavelet filter with edge compensation for remote sensing image denoising[J]. IEEE Access, 7, 91966-91979(2019).

    [4] LIU Peng, WANG Meng, WANG Lizhe et al. Remote-sensing image denoising with multi-sourced information[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12, 660-674(2019).

    [5] ZHANG Congmei, SUN Quansen, WANG Chao et al. Remote sensing image de-noising via sparse representation based on non-local self-similarity[J]. Remote Sensing Technology and Application, 31, 739-747(2016).

    [6] FAN Ningxin, ZHANG Songlin, LI Yali et al. A denoising method of hyperspectral remote sensing image based on wavelet transform[C], 1-5(2021).

    [7] HUANG Huazheng, WANG Zhicheng, LI Qian et al. DSRD: deep sparse representation with learnable dictionary for remotely sensed image denoising[J]. International Journal of Remote Sensing, 43, 2699-2711(2022).

    [8] LI Min, ZHANG Siyuan, LI Zhongyu et al. Target-oriented SAR formation via sparse dictionary learning[C], 4576-4579(2021).

    [9] AHARON M, ELAD M, BRUCKSTEIN A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 54, 4311-4322(2006).

    [10] BUADES A, COLL B, MOREL J M. Non-local means denoising[J]. Image Processing On Line, 1, 208-212(2011).

    [11] DABOV K, FOI A, KATKOVNIK V et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 16, 2080-2095(2007).

    [12] ZHANG Congmei, SUN Quansen, WANG Chao et al. Remote sensing image de-noising via sparse representation based on non-local self-similarity[J]. Remote Sensing Technology and Application, 31, 739-747(2016).

    [13] ZHANG Kai, ZUO Wangmeng, CHEN Yunjin et al. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 26, 3142-3155(2017).

    [14] TIAN Chunwei, XU Yong, ZUO Wangmeng. Image denoising using deep CNN with batch renormalization[J]. Neural Networks, 121, 461-473(2020).

    [15] ANWAR S, BARNES N. Real image denoising with feature attention[C], 3155-3164(2019).

    [16] WU Congzhong, CHEN Xi, ZHAN Shu. Remote sensing image denoising using residual encoder-decoder networks with edge enhancement[J]. Journal of Remote Sensing, 24, 27-36(2020).

    [17] HU Jie, LI Shen, SUN Gang. Squeeze-and-excitation networks[C], 7132-7141(2018).

    [18] BHOSALE N P, MANZA R R. Analysis of effect of noise removal filters on noisy remote sensing images[J]. International Journal of Scientific & Engineering Research (IJSER), 4, 1151(2013).

    [19] CHEN Yong, HUANG Tingzhu, ZHAO Xiele et al. Stripe noise removal of remote sensing images by total variation regularization and group sparsity constraint[J]. Remote sensing, 9, 559(2017).

    [20] GOYAL B, DOGRA A, AGRAWAL S et al. Image denoising review: from classical to state-of-the-art approaches[J]. Information Fusion, 55, 220-244(2020).

    [21] ACITO N, DIANI M, CORSINI G. Signal-dependent noise modeling and model parameter estimation in hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 49, 2957-2971(2011).

    [22] CHENG Gong, Junwei HAB, LU Xiaoqiang. Remote sensing image scene classification: Benchmark and state of the art[J]. Proceedings of the IEEE, 105, 1865-1883(2017).

    [23] ZOU Qin, NI Lihao, ZHANG Tong et al. Deep learning based feature selection for remote sensing scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 12, 2321-2325(2015).

    [24] LANDGREBE D. Hyperspectral image data analysis[J]. IEEE Signal Processing Magazine, 19, 17-28(2002).

    [25] LEDIG C, THEIS L, HUSZAR F et al. Photo-realistic single image super-resolution using a generative adversarial network[C], 4681-4690(2017).

    Tools

    Get Citation

    Copy Citation Text

    Xueyuan GUAN, Wei HU, Heng FU. Remote Sensing Image Denoising Algorithm with Multi-receptive Field Feature Fusion and Enhancement[J]. Acta Photonica Sinica, 2022, 51(11): 1110003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 6, 2022

    Accepted: Aug. 15, 2022

    Published Online: Dec. 13, 2022

    The Author Email: Wei HU (519351243@qq.com)

    DOI:10.3788/gzxb20225111.1110003

    Topics