Laser & Optoelectronics Progress, Volume. 62, Issue 4, 0428001(2025)

Optical Small Target Detection Method by Drone Based on Dual-Modal Image Fusion

Kaixuan Chang1,2、*, Jianhua Huang1,2, Xiyan Sun1,2, Jian Luo1,2, Shitao Bao1,2, and Huansheng Huang1,2
Author Affiliations
  • 1Schnool of Information and Communicaiton, Guilin University of Electronic Technology, Guilin 541004, Guangxi , China
  • 2Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, Guangxi , China
  • show less
    Figures & Tables(20)
    Network structure diagram of YOLOv8
    Network structure diagram of FFDN
    Network structure diagram of MFDN
    Network structure diagram of BFDN
    Network structure diagram of BFDN_YOLOv8
    Structure of BRA module
    Structure of DCFFB module
    Visualization results of comparative experiments on fusion detection frameworks in DroneVehicle dataset
    Visualization results of comparative experiment on object detection networks in DroneVehicle dataset
    Visualization results of comparative experiment on dual-modal image fusion detection method in DroneVehicle dataset
    Visualization results of ablation experiments in DroneVehicle dataset
    Visualization results of fusion detection framework comparison experiment in LLVIP dataset
    Visualization results of comparative experiment of dual-modal image fusion detection method in LLVIP dataset
    • Table 1. Training parameter settings

      View table

      Table 1. Training parameter settings

      Training parameterValue
      Epoch100
      Batch_size16
      Image size640✕640
      Initial learning rate0.001
      OptimizerAdam
      Pretrained weights
    • Table 2. Comparative experiments of fusion detection framework in DroneVehicle dataset

      View table

      Table 2. Comparative experiments of fusion detection framework in DroneVehicle dataset

      ModelIndexValue /%FPS /(frame/s)Number of parametersGFLOPS
      AllCarTruckBusVanFeright car
      YOLOv8_VIPrecision69.289.961.588.355.151.4357.131523368.8
      Recall68.880.263.590.852.147.4
      mAP70.894.563.094.353.249.2
      YOLOv8_IRPrecision65.683.953.486.552.551.8357.131523368.8
      Recall70.494.265.593.550.848.0
      mAP69.794.161.293.951.148.4
      Dual-channel YOLOv8Precision70.785.959.886.758.962.1232.6601167016.2
      Recall73.095.571.394.154.549.7
      mAP73.496.665.294.557.753.1
      FFDNPrecision75.090.668.188.566.261.8303.030081878.8
      Recall73.295.270.593.455.651.3
      mAP77.697.673.596.463.057.8
      MFDNPrecision70.289.459.986.958.955.7122.030075988.8
      Recall73.395.868.692.953.755.4
      mAP75.397.569.295.757.257.1
      BFDNPrecision75.791.366.689.064.367.3238.1631368316.4
      Recall73.595.069.894.359.049.6
      mAP78.797.873.296.365.660.8
    • Table 3. Comparative experiment of object detection networks in DroneVehicle dataset

      View table

      Table 3. Comparative experiment of object detection networks in DroneVehicle dataset

      ModelIndexValue /%FPS /(frame/s)Number of parametersGFLOPS
      AllCarTruckBusVanFeright car
      YOLOv8_VIPrecision69.289.961.588.355.151.4357.131523368.80
      Recall68.880.263.590.852.147.4
      mAP70.894.563.094.353.249.2
      RT-DETRPrecision69.186.958.278.864.857.0196.13281635110.80
      Recall67.094.763.391.746.638.7
      mAP71.293.165.996.453.147.3
      RTMDetPrecision74.892.366.890.959.264.521.25225800079.96
      Recall71.090.669.792.150.951.3
      mAP77.395.573.393.066.558.1
      TOODPrecision66.286.563.284.447.749.112.73202800158.00
      Recall64.188.956.587.339.648.3
      mAP73.691.362.394.759.160.6
      BFDN_YOLOv8Precision77.391.768.091.967.867.0153.8670067117.10
      Recall74.394.870.594.358.153.8
      mAP80.097.875.496.667.063.0
    • Table 4. Comparative experiment of dual-modal image fusion detection methods in DroneVehicle dataset

      View table

      Table 4. Comparative experiment of dual-modal image fusion detection methods in DroneVehicle dataset

      ModelIndexValue /%
      AllCarTruckBusVanFeright car
      YOLOv8_VIPrecision69.289.961.588.355.151.4
      Recall68.880.263.590.852.147.4
      mAP70.894.563.094.353.249.2
      YOLOv8_IRPrecision65.683.953.486.552.551.8
      Recall70.494.265.593.550.848.0
      mAP69.794.161.293.951.148.4
      SwinFusionPrecision67.887.857.485.555.952.2
      Recall70.493.964.689.053.850.7
      mAP71.696.263.793.154.450.6
      MFEIFPrecision68.488.761.485.954.551.6
      Recall72.095.270.692.552.549.1
      mAP72.797.170.295.154.047.0
      NestFusePrecision68.489.357.288.952.953.6
      Recall71.395.867.094.553.445.6
      mAP71.096.262.393.051.052.5
      PIAFuisonPrecision67.585.856.585.750.359.0
      Recall67.792.364.292.547.941.6
      mAP68.493.357.193.648.949.1
      PSFusionPrecision71.789.862.786.462.757.0
      Recall71.795.567.692.353.250.0
      mAP74.797.568.394.756.656.3
      TarDALPrecision63.689.652.881.651.242.7
      Recall68.191.469.185.949.644.7
      mAP69.896.559.792.750.849.3
      BFDN_YOLOv8Precision77.391.768.091.967.867.0
      Recall74.394.870.594.358.153.8
      mAP80.097.875.496.667.063.0
    • Table 5. Ablation experiments in DroneVehicle dataset

      View table

      Table 5. Ablation experiments in DroneVehicle dataset

      ModelIndexValue /%FPS /(frame/s)Number of parametersGFLOPS
      AllCarTruckBusVanFeright car
      Dual-channel YOLOv8Precision70.785.959.886.758.962.1232.6601167016.2
      Recall73.095.571.394.154.549.7
      mAP73.496.665.294.557.753.1
      w/o BRAPrecision69.185.959.384.556.858.9169.5684699818.5
      Recall73.295.870.992.954.951.6
      mAP73.596.76494.657.355.1
      w/o DCFFBPrecision75.690.666.990.962.567.0172.4586456314.1
      Recall75.796.071.493.959.957.2
      mAP79.997.975.196.565.864.2
      BFDN_YOLOv8Precision77.391.768.091.967.867.0153.8670067117.1
      Recall74.394.870.594.358.153.8
      mAP80.097.875.496.667.063.0
    • Table 6. Comparative experiment of fusion detection framework in LLVIP dataset

      View table

      Table 6. Comparative experiment of fusion detection framework in LLVIP dataset

      ModelPrecision /%Recall /%mAP /%
      YOLOv8_VI81.767.176.0
      YOLOv8_IR86.274.078.7
      Dual-channel YOLOv884.175.884.6
      FFDN88.672.884.1
      MFDN87.476.885.9
      BFDN85.180.787.0
    • Table 7. Comparative experiment of dual-modal image fusion detection methods in LLVIP dataset

      View table

      Table 7. Comparative experiment of dual-modal image fusion detection methods in LLVIP dataset

      ModelPrecision /%Recall /%mAP /%
      YOLOv8_VI81.767.176.0
      YOLOv8_IR86.274.078.7
      SwinFusion88.278.687.8
      MFEIF88.280.187.7
      NestFuse88.678.288.1
      PIAFusion89.779.788.6
      PSFusion87.275.884.1
      TarDAL88.479.387.9
      BFDN_YOLOv888.680.788.7
    Tools

    Get Citation

    Copy Citation Text

    Kaixuan Chang, Jianhua Huang, Xiyan Sun, Jian Luo, Shitao Bao, Huansheng Huang. Optical Small Target Detection Method by Drone Based on Dual-Modal Image Fusion[J]. Laser & Optoelectronics Progress, 2025, 62(4): 0428001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: May. 14, 2024

    Accepted: Jun. 27, 2024

    Published Online: Feb. 18, 2025

    The Author Email:

    DOI:10.3788/LOP241283

    CSTR:32186.14.LOP241283

    Topics