Frontiers of Optoelectronics, Volume. 17, Issue 2, 12200(2024)

Monolayer graphene/GaN heterostructure photodetector with UV-IR dual-wavelength photoresponses

Junjun Xue1, Jiaming Tong1, Zhujun Gao1, Zhouyu Chen2, Haoyu Fang2, Saisai Wang1、*, Ting Zhi1, and Jin Wang1
Author Affiliations
  • 1College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology),Nanjing University of Posts and Telecommunications,Nanjing 210023, China
  • 2Portland Institute, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
  • show less
    References(37)

    [2] [2] Zeng, C., Lin, W., He, T., Zhao, Y., Sun, Y., Cui, Q., Zhang,X., Lu, S., Zhang, X., Xu, Y., Kong, M., Zhang, B.: Ultravioletinfrared dual-color photodetector based on vertical GaN nanowire array and graphene. Chin. Opt. Lett. 18(11), 112501 (2020)

    [3] [3] Perera, A.G.U., Ariyawansa, G., Rinzan, M.B.M., Stevens, M.,Alevli, M., Dietz, N., Matsik, S.G., Asghar, A., Ferguson, I.T.,Luo, H., Bezinger, A., Liu, H.C.: Performance improvements of ultraviolet/infrared dual-band detectors. Infrared Phys. Technol.50(2–3), 142–148 (2007)

    [4] [4] Guo, J., Ye, B., Gu, Y., Liu, Y., Yang, X., Xie, F., Zhang, X., Qian,W., Zhang, X., Lu, N., Yang, G.: Broadband photodetector for ultraviolet to visible wavelengths based on the Ba2PbI4/GaN heterostructure.ACS Appl. Mater. Interfaces 15(48), 56014–56021(2023)

    [5] [5] Liu, H., Ye, B., Gu, Y., Liu, Y., Yang, X., Xie, F., Zhang, X.,Qian, W., Zhang, X., Lu, N., Yang, G.: UV-visible dual-band photodetector based on an all-inorganic Mn-doped CsPbCl3/GaN type-II heterojunction. Appl. Phys. Lett. 123(23), 232105 (2023)

    [6] [6] Ye, B.J., Liu, Y.S., Xie, F., Yang, X.F., Gu, Y., Zhang, X.M., Qian,W.Y., Zhu, C., Lu, N.Y., Chen, G.Q., Yang, G.F.: Dual-wavelength photodetector based on layered WSe2/n-GaN van der Waals heterostructure.Mater. Today Nano 21, 100295 (2023)

    [7] [7] Qi, L., Li, X., Tang, Z., Yin, S., Zhao, Y.: Monolithically integrated UV/IR dual-color photodetector with AlGaN/GaN heterojunction structure. Semicond. Technol. 39(8), 575–578 (2014)

    [8] [8] Singh, D.K., Pant, R.K., Nanda, K.K., Krupanidhi, S.B.: Differentiation of ultraviolet/visible photons from near infrared photons by MoS2/GaN/Si-based photodetector. Appl. Phys. Lett. 119(12),121102 (2021)

    [9] [9] Sandhu, H.K., John, J.W., Jakhar, A., Sharma, A., Jain, A., Das, S.:MoSe2/n-GaN heterojunction induced high photoconductive gain for low-noise broadband photodetection from ultraviolet to near-infrared wavelengths. Adv. Mater. Interfaces. 9(12), 2102200 (2022)

    [10] [10] Solanke, S.V., Soman, R., Rangarajan, M., Raghavan, S., Nath,D.N.: UV/near-IR dual band photodetector based on p-GaN/α-In2Se3 heterojunction. Sens. Actuator A Phys. 317, 112455 (2021)

    [11] [11] Tang, X., Hao, Z., Wang, L., Yu, J., Wang, X., Luo, Y., Sun, C.,Han, Y., Xiong, B., Wang, J., Li, H.: Plasmon-enhanced hot-electron photodetector based on Au/GaN-nanopillar arrays for shortwave-infrared detection. Appl. Sci. (Basel) 12(9), 4277 (2022)

    [12] [12] Zhang, X., Liu, B., Liu, Q., Yang, W., Xiong, C., Li, J., Jiang,X.: Ultrasensitive and highly selective photodetections of UV-A rays based on individual bicrystalline GaN nanowire. ACS Appl.Mater. Interfaces 9(3), 2669–2677 (2017)

    [13] [13] Rabiee Golgir, H., Li, D.W., Keramatnejad, K., Zou, Q.M., Xiao,J., Wang, F., Jiang, L., Silvain, J.F., Lu, Y.F.: Fast growth of GaN epilayers via laser-assisted metal-organic chemical vapor deposition for ultraviolet photodetector applications. ACS Appl. Mater.Interfaces 9(25), 21539–21547 (2017)

    [14] [14] Guo, J., Gu, Y., Liu, Y., Liang, F., Chen, W., Xie, F., Yang, X.,Qian, W., Zhang, X., Chen, G., Yang, G.: Polarization assisted interdigital AlGaN/GaN heterostructure ultraviolet photodetectors.IEEE Trans. Electron Dev. 70(5), 2352–2357 (2023)

    [15] [15] Gong, B., Ye, B., Gu, Y., Xie, F., Zhang, X., Qian, W., Zhang,X., Lu, N., Yang, G.: Self-powered GaN-based MSM ultraviolet photodetector with asymmetrical interdigitated structure. IEEE Trans. Electron Dev. 71(1), 922–926 (2024)

    [16] [16] Tian, H., Liu, Q., Hu, A., He, X., Hu, Z., Guo, X.: Hybrid graphene/GaN ultraviolet photo-transistors with high responsivity and speed. Opt. Express 26(5), 5408–5415 (2018)

    [17] [17] Gundimeda, A., Krishna, S., Aggarwal, N., Sharma, A., Sharma,N.D., Maurya, K.K., Husale, S., Gupta, G.: Fabrication of nonpolar GaN based highly responsive and fast UV photodetector.Appl. Phys. Lett. 110(10), 103507 (2017)

    [18] [18] Yang, J., Tang, L., Luo, W., Shen, J., Zhou, D., Feng, S., Wei, X.,Shi, H.: Light trapping in conformal graphene/silicon nanoholes for high-performance photodetectors. ACS Appl. Mater. Interfaces11(33), 30421–30429 (2019)

    [19] [19] Xie, C., Wang, Y., Zhang, Z.X., Wang, D., Luo, L.B.: Graphene/semiconductor hybrid heterostructures for optoelectronic device applications. Nano Today 19, 41–83 (2018)

    [20] [20] Wei, X., Yan, F.G., Lv, Q.S., Shen, C., Wang, K.Y.: Fast gatetunable photodetection in the graphene sandwiched WSe2/GaSe heterojunctions. Nanoscale 9(24), 8388–8392 (2017)

    [21] [21] Deb, P., Dhar, J.C.: Fast response UV photodetection using TiO2 nanowire/graphene oxide thin-film heterostructure. IEEE Photonics Technol. Lett. 31(8), 571–574 (2019)

    [22] [22] Nowak, D., Clapa, M., Kula, P., Sochacki, M., Stonio, B., Galazka,M., Pelka, M., Kuten, D., Niedzielski, P.: Influence of the interactions at the graphene-substrate boundary on graphene sensitivity to UV irradiation. Materials (Basel). 12(23), 3949 (2019)

    [23] [23] Guo, X., Wang, W., Nan, H., Yu, Y., Jiang, J., Zhao, W., Li, J., Zafar,Z., Xiang, N., Ni, Z., Hu, W., You, Y., Ni, Z.: High-performance graphene photodetector using interfacial gating. Optica 3(10), 1066–1070 (2016)

    [24] [24] Hu, W., Ye, Z., Liao, L., Chen, H., Chen, L., Ding, R., He, L., Chen,X., Lu, W.: 128 × 128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk. Opt. Lett. 39(17), 5184 (2014)

    [25] [25] He, T., Ma, H., Wang, Z., Li, Q., Liu, S., Duan, S., Xu, T., Wang,J., Wu, H., Zhong, F., Ye, Y., Wu, J., Lin, S., Zhang, K., Martyniuk,P., Rogalski, A., Wang, P., Li, L., Lin, H., Hu, W.: On-chip optoelectronic logic gates operating in the telecom band. Nat. Photonics.18(1), 60–67 (2024)

    [26] [26] Kim, S., Seo, T.H., Kim, M.J., Song, K.M., Suh, E.K., Kim, H.:Graphene-GaN Schottky diodes. Nano Res. 8(4), 1327–1338 (2015)

    [27] [27] Seo, T.H., Lee, K.J., Oh, T.S., Lee, Y.S., Jeong, H., Park, A.H., Kim,H., Choi, Y.R., Suh, E.K., Cuong, T.V., Pham, V.H., Chung, J.S.,Kim, E.J.: Graphene network on indium tin oxide nanodot nodes for transparent and current spreading electrode in InGaN/GaN light emitting diode. Appl. Phys. Lett. 98(25), 251114 (2011)

    [28] [28] Hoon Seo, T., Kyoung Kim, B., Shin, G., Lee, C., Jong Kim, M.,Kim, H., Suh, E.K.: Graphene-silver nanowire hybrid structure as a transparent and current spreading electrode in ultraviolet light emitting diodes. Appl. Phys. Lett. 103(5), 051105 (2013)

    [29] [29] Cho, H., Lee, C., Oh, S.I., Park, S., Kim, H.C., Kim, M.J.: J, K.M.:Parametric study of methanol chemical vapor deposition growth for graphene. Carbon. Lett. 13(4), 205–211 (2012)

    [30] [30] Smidstrup, S., Markussen, T., Vancraeyveld, P., Wellendorff, J., Schneider,J., Gunst, T., Verstichel, B., Stradi, D., Khomyakov, P.A.,Vej-Hansen, U.G., Lee, M.E., Chill, S.T., Rasmussen, F., Penazzi,G., Corsetti, F., Ojanper-, A., Jensen, K., Palsgaard, M.L.N., Martinez,U., Blom, A., Brandbyge, M., Stokbro, K.: Quantum ATK: an integrated platform of electronic and atomic-scale modelling tools.J. Phys. Condens. Matter. 32(1), 015901 (2020)

    [31] [31] Han, G.H., Güne-, F., Bae, J.J., Kim, E.S., Chae, S.J., Shin, H.J.,Choi, J.Y., Pribat, D., Lee, Y.H.: Influence of copper morphology in forming nucleation seeds for graphene growth. Nano Lett. 11(10),4144–4148 (2011)

    [32] [32] Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M.,Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., Geim,A.K.: Raman spectrum of graphene and graphene layers. Phys. Rev.Lett. 97(18), 187401 (2006)

    [33] [33] Yang, F., Cong, H., Yu, K., Zhou, L., Wang, N., Liu, Z., Li, C.,Wang, Q., Cheng, B.: Ultrathin broadband germanium-graphene hybrid photodetector with high performance. ACS Appl. Mater.Interfaces 9(15), 13422–13429 (2017)

    [34] [34] Wei, X., Yan, F., Lv, Q., Zhu, W., Hu, C., Patanè, A., Wang, K.:Enhanced photoresponse in MoTe2 photodetectors with asymmetric graphene contacts. Adv. Opt. Mater. 7(12), 1900190 (2019)

    [35] [35] Yüksel, -.F., Ku-, M., -im-ir, N., -afak, H., -ahin, M., Yenel, E.: A detailed analysis of current-voltage characteristics of Au/perylenemonoimide/n-Si Schottky barrier diodes over a wide temperature range. J. Appl. Phys. 110(2), 024507 (2011)

    [36] [36] Liu, C., Li, E., Zheng, Y., Bai, K., Cui, Z., Ma, D.: Regulation of vertical and biaxial strain on electronic and optical properties of G-GaN-G sandwich heterostructure. J. Mater. Sci. 56(19), 11402–11413 (2021)

    [37] [37] Ferreira, L.G., Marques, M., Teles, L.K.: Approximation to density functional theory for the calculation of band gaps of semiconductors.Phys Rev B Condens Matter Mater Phys. 78(12), 125116 (2008)

    [38] [38] Wu, Z., Lu, Y., Xu, W., Zhang, Y., Li, J., Lin, S.: Surface plasmon enhanced graphene/p-GaN heterostructure light-emitting-diode by Ag nano-particles. Nano Energy 30, 362–367 (2016)

    Tools

    Get Citation

    Copy Citation Text

    Junjun Xue, Jiaming Tong, Zhujun Gao, Zhouyu Chen, Haoyu Fang, Saisai Wang, Ting Zhi, Jin Wang. Monolayer graphene/GaN heterostructure photodetector with UV-IR dual-wavelength photoresponses[J]. Frontiers of Optoelectronics, 2024, 17(2): 12200

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: RESEARCH ARTICLE

    Received: Apr. 18, 2024

    Accepted: May. 14, 2024

    Published Online: Aug. 21, 2024

    The Author Email: Saisai Wang (sswang@njupt.edu.cn)

    DOI:10.1007/s12200-024-00121-7

    Topics