Journal of Innovative Optical Health Sciences, Volume. 15, Issue 5, 2250028(2022)

A smartphone-based automated fluorescence analysis system for point-of-care testing of Hg(II)

Yafei Chen*, Ke Zhang**, Yuan Liu***, and Chunsun Zhang*********
Author Affiliations
  • MOE Key Laboratory of Laser Life Science, & Institute of Laser Life Science, College of Biophotonics South China Normal University, Guangzhou 510631, P. R. China
  • show less
    References(36)

    [1] B. X Lin, Y Yu, Y. J Cao, M. L Guo, D. B Zhu, J. X Dai, M. S Zheng. Point-of-care testing for streptomycin based on aptamer recognizing and digital image colorimetry by smartphone. Biosens. Bioelectron, 100, 482-489(2018).

    [2] F Katzmeier, L Aufinger, A Dupin, J Quintero, M Lenz, L Bauer, S Klumpe, D Sherpa, B Dürr, M Honemann, I Styazhkin, F. C Simmel, M Heymann. A low-cost fluorescence reader for in vitro transcription and nucleic acid detection with Cas13a. Plos One, 14, e0220091(2019).

    [3] T Liu, W. Q Wang, H Ding, D. R Yi. Smartphone-based hand-held optical fiber fluorescence sensor for on-site pH detection. IEEE Sens. J, 19, 9441-9446(2019).

    [4] J. N Wang, Z. L Xia, Y Su, M. C Lu, Y Wan, Y He. Handheld, one-step, and rapid electrochemical biosensor platform with smartphone interface. Appl. Mech. Mater, 868, 340-344(2017).

    [5] K. Y Wang, Z. H Wang, H Zeng, X. L Luo, T Yang. Advances in portable visual detection of pathogenic bacteria. ACS Appl. Bio Mater, 3, 7291-7305(2020).

    [6] S Ghosh, K Aggarwal, T. U Vinitha, T Nguyen, J. Y Han, C. H Ahn. A new microchannel capillary flow assay (MCFA) platform with lyophilized chemiluminescence reagents for a smartphone-based POCT detecting malaria. Microsyst. Nanoeng, 6, 2-18(2020).

    [7] J. J Liu, Z. X Geng, Z. Y Fan, J Liu, H. D Chen. Point-of-care testing based on smartphone: The current state-of-the-art (2017–2018). Biosens. Bioelectron, 132, 17-37(2019).

    [8] Y Fan, J. T Liu, Y Wang, J. P Luo, H. R Xu, S. W Xu, X. X Cai. A wireless point-of-care testing system for the detection of neuron-specific enolase with microfluidic paper-based analytical devices. Biosens. Bioelectron, 95, 60-66(2017).

    [9] M Xiao, Z. G Liu, N. X Xu, L. L Jiang, M. S Yang, C. Q Yi. A smartphone-based sensing system for on-site quantitation of multiple heavy metal ions using fluorescent carbon nanodots based microarrays. ACS Sens, 5, 870-878(2020).

    [10] S Sajed, F Arefi, M Kolahdouz, M. A Sadeghi. Improving sensitivity of mercury detection using learning based smartphone. Sens. Actuat. B, 298, 126942(2019).

    [11] Y Gong, Y. M Zheng, B. R Jin, M. L You, J. Y Wang, X. J Li, M Li, F Xu, F Li. A portable and universal upconversion nanoparticle-based lateral flow assay platform for point-of-care testing. Talanta, 201, 126-133(2019).

    [12] Z. Z Xu, Z. J Liu, M Xiao, L. L Jiang, C. Q Yi. A smartphone-based quantitative point-of-care testing (POCT) system for simultaneous detection of multiple heavy metal ions. Chem. Eng. J, 394, 124966-124975(2020).

    [13] S Li, J. L Liu, Z Chen, Y. L Lu, S. S Low, L. H Zhu, C Cheng, Y He, Q. M Chen, B Su, Q. J Liu. Electrogenerated chemiluminescence on smartphone with graphene quantum dots nanocomposites for Escherichia Coli detection. Sens. Actuators B, 297, 126811(2019).

    [14] T. H Fereja, S. A Kitte, W. Y Gao, F Yuan, D Snizhko, L. M Qi, A Nsabimana, Z. Y Liu, G. B Xu. Artesunate-luminol chemiluminescence system for the detection of hemin. Talanta, 204, 379-385(2019).

    [15] T Liu, W. Q Wang, D Jian, J. H Li, H Ding, D. R Yi, F Liu, S. Y Wang. Quantitative remote and on-site Hg2+ detection using the handheld smartphone based optical fiber fluorescence sensor (SOFFS). Sens. Actuators B, 301, 127168(2019).

    [16] Y. K Shan, B Wang, H. C Huang, D Jian, X. P Wu, L. A Xue, S. Y Wang, F Liu. On-site quantitative Hg2+ measurements based on selective and sensitive fluorescence biosensor and miniaturized smartphone fluorescence microscope. Biosens. Bioelectron, 132, 238-247(2019).

    [17] L Wang, B. Q Li, F Xu, X. Y Shi, D. M Feng, D. Q Wei, Y Li, Y. J Feng, Y. M Wang, D. C Jia, Y Zhou. High-yield synthesis of strong photoluminescent N-doped carbon nanodots derived from hydrosoluble chitosan for mercury ion sensing via smartphone APP. Biosens. Bioelectron, 79, 1-8(2016).

    [18] D Hatiboruah, T Das, N Chamuah, D Rabha, B Talukdar, U Bora, K. U Ahamad, P Nath. Estimation of trace-mercury concentration in water using a smartphone. Measurement, 154, 107507(2020).

    [19] L Guo, S. A Chen, Y. L Yu, J. H Wang. A smartphone optical device for point-of-care testing of glucose and cholesterol using Ag NPS/Uio-66-NH2-based ratiometric fluorescent probe. Anal. Chem, 93, 16240-16247(2021).

    [20] S Chung, L. E Breshears, A Gonzales, C. M Jennings, C. M Morrison, W. Q Betancourt, K. A Reynolds, J. Y Yoon. Norovirus detection in water samples at the level of single virus copies per microliter using a smartphone-based fluorescence microscope. Nat. Protoc, 16, 1452-1475(2021).

    [21] Q. P Shang, P Zhang, H. J Li, R Liu, C. S Zhang. A flow chemiluminescence paper-based microfluidic device for detection of chromium (III) in water. J. Innov. Opt. Heal. Sci, 12, 1950016(2019).

    [22] J Li, J Jiang, Y Su, Y Liang, C. S Zhang. A novel cloth-based supersandwich electrochemical aptasensor for direct, sensitive detection of pathogens. Anal. Chim. Acta, 1188, 339176(2021).

    [23] C. S Zhang, Y Su, Y Liang, W Lai. Microfluidic cloth-based analytical devices: Emerging technologies and application. Biosens. Bioelectron, 168, 112391(2020).

    [24] L. Y Wang, B. W Li, J. N Wang, J. Q. J. H Li, J. P Ma, L. X Chen. A rotary multi-positioned cloth/paper hybrid microfluidic device for simultaneous fluorescence sensing of mercury and lead ions by using ion imprinted technologies. J. Hazard. Mater, 428, 128165(2022).

    [25] H Nguyen, I Misbah, W. C Shih. Smartphone nano-colorimetry for on-demand multiplex lead and mercury detection and quantitation in drinking water. IEEE Sens. J, 20, 6685-6691(2020).

    [26] B Gao, W. T Gong, Q. L Zhang, J. W Ye, G. L Ning. A selective “turn-on” fluorescent sensor for Hg2+ based on “reactive” 7-hydroxycoumarin compound. Sens. Actuators B, 162, 391-395(2012).

    [27] Y Hou, Y Chen, X. Y Guo, W Liu, C. C Lv, Y. L Xu, Y Jin, B. X Li. Aggregation-induced chemiluminescence system for sensitive detection of mercury ions. Anal. Bioanal. Chem, 413, 625-633(2021).

    [28] L Shi, F. J Jia, L Wang, M Jalalah, M. S Al-Assiri, T Gao, F. A Harraz, G. X Li. Fabrication of an artificial ionic gate inspired by mercury-resistant bacteria for simple and sensitive detection of mercury ion. Sens. Actuators B, 326, 128976(2021).

    [29] M Shellaiah, K. W Sun. Progress in metal-organic frameworks facilitated mercury detection and removal. Chemosensors, 9, 101(2021).

    [30] A Lopreside, L Montal, B. J Wang, A Tassoni, M Ferri, M. M Calabretta, E Michelini. Orthogonal paper biosensor for mercury (II) combining bioluminescence and colorimetric smartphone detection. Biosens. Bioelectron, 194, 113569(2021).

    [31] K. Y Zhang, Y. X Sang, Y. D Gao, Q. X Sun, W. N Li. A fluorescence turn-on CDs-AgNPs composites for highly sensitive and selective detection of Hg2+. J. Hazard. Mater, 264, 120281(2022).

    [32] M Wang, W. Y Feng, J. W Shi, F Zhang, B Wang, M. T Zhu, B Li, Y. L Zhao, Z. F Chai. Development of a mild mercaptoethanol extraction method for determination of mercury species in biological samples by HPLC–ICP-MS. Talanta, 71, 2034-2039(2007).

    [33] M Liu, C. S Zhang, F. F Liu. Understanding wax screen-printing: A novel patterning process for microfluidic cloth-based analytical devices. Anal. Chim. Acta, 891, 234-246(2015).

    [34] T. V Ramakrisiina, G Aravamudan, M Vijayakumar. Spectrophotometric determination of mercury(II) as the ternary complex with rhodamine 6G and iodide. Anal. Chim. Acta, 84, 369-375(1976).

    [35] M Barzan, F Hajiesmaeilbaigi. Investigation the concentration effect on the absorption and fluorescence properties of Rhodamine 6G dye. Optik, 159, 157-161(2018).

    [36] G. H Chen, W. Y Chen, Y. C Yen, C. W Wang, H. T Chang, C. F Chen. Detection of mercury (II) ions using colorimetric gold nanoparticles on paper-based analytical devices. Anal. Chem, 86, 6843-6849(2014).

    Tools

    Get Citation

    Copy Citation Text

    Yafei Chen, Ke Zhang, Yuan Liu, Chunsun Zhang. A smartphone-based automated fluorescence analysis system for point-of-care testing of Hg(II)[J]. Journal of Innovative Optical Health Sciences, 2022, 15(5): 2250028

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Mar. 17, 2022

    Accepted: May. 11, 2022

    Published Online: Oct. 24, 2022

    The Author Email: Yafei Chen (cyfhiggs@163.com), Ke Zhang (kerozhang@126.com), Yuan Liu (ly871120231@163.com), Chunsun Zhang (zhangcs_scnu@126.com)

    DOI:10.1142/S1793545822500286

    Topics