Chinese Journal of Lasers, Volume. 36, Issue 7, 1643(2009)
Discussion of Comprehensive Evaluation on Laser Beam Quality
[1] [1] Jun Dong, Akira Shirakawa, Ken-ichi Ueda et al.. Near-diffraction-limited passively Q-switched YbY3Al5O12 ceramic lasers with peak power >150 kW[J]. Appl. Phys. Lett., 2007, 90(13): 131105
[2] [2] Jay Marmo, Hagop Injeyan, Hiroshi Komine et al.. Joint high power solid state laser program advancements at Northrop Grumman[C]. SPIE, 2009, 7195: 719507
[3] [3] J. V. Sheldakova, A. V. Kudryashov, V. Y. Zavalova et al.. Beam quality measurements with Shack-Hartmann wavefront sensor and M2-sensor: comparison of two methods[C]. SPIE, 2007, 6452: 645207
[4] [4] Hongru Yang, Lei Wu, Xuexin Wang et al.. Evaluation of beam quality for high-power lasers[C]. SPIE, 2007, 6823: 682316
[5] [5] W. Li, G. Feng, Y. Huang et al.. Matrix formulation of the beam quality of the Hermite-Gaussian beam[J]. Laser Physics, 2009, 19(3): 1~6
[6] [6] Yuqing Fu, Guoying Feng, Dayong Zhang et al.. Beam quality factor of mixed modes emerging from a multimode step-index fiber[J]. Optik, 2009, (in press)
[7] [7] Amiel Ishaaya, Vardit Eckhouse, Liran Shimshi et al.. Improving the output beam quality of multimode laser resonators[J]. Opt. Express, 2005, 13(7): 2722~2730
[8] [8] D. Wright, P. Greve, J. Fleischer et al.. Laser beam width, divergence and beam propagation factor——an international standardization approach[J]. Opt. and Quantum Electron., 1992, 24(9): 993~1000
[9] [9] Anthony E. Siegman. Defining, measuring, and optimizing laser beam quality[C]. SPIE, 1993, 1868: 2~12
[10] [10] G. D. Boyd, J. P Gordon. Confocal multimode resonator for millimeter through optical wavelength masers[J]. Bell. Sys. Technol., 1961, 40: 489~508
[12] [12] V. N. Mahajan. Strehl ratio for primary abrration: some analytical results for circular and annular pupils[J]. J. Opt. Soc. Am. A, 1982, 72(9): 1258~1266
[13] [13] A. E. Siegman. How to (maybe) measure laser beam quality[J]. OSA Trends in Optics and Photonics Series, 1998, 17(2): 184~199
[14] [14] ISO/TC 172/SC9/WG1 N14, 1991
[15] [15] ISO/TC 172/SC9/WG1 N15, 1992
[16] [16] SO/TC 172/SC9/WG1 N16, 1993
[17] [17] International Standard. Lasers and laser-related equipment——Test methods for laser beam widths, divergence angles and beam propagation ratios-Part 1: Stigmatic and simple astigmatic beams[S]. ISO, 2005. 11146-1
[18] [18] International Standard. Lasers and laser-related equipment——Test methods for laser beam widths, divergence angles and beam propagation ratios-Part 2: General astigmatic beams[S]. ISO, 2005, 11146-2
[19] [19] International Standard. Lasers and laser-related equipment——Test methods for laser beam widths, divergence angles and beam propagation ratios-Part 3: Intrinsic and geometrical laser beam classification, propagation and details of test methods[S]. ISO/TR, 2004. 11146-3
[20] [20] A. E. Siegman. New developments in laser resonators[C]. SPIE, 1990, 1224: 2~14
[21] [21] C. Gao, H. Weber. The problems with M2[J]. Optics & Laser Technology, 2000, 32: 221~224
[22] [22] Baida Lü, Xiaoling Ji, Shirong Luo. The beam quality of annular lasers and related problems[J]. J. Modern Optics, 2001, 48(7): 1171~1178
[25] [25] M. A. Porras. Experimental investigation on aperture-diffracted laser beam characterization[J]. Opt. Commun., 1994, 109(1): 5~9
[26] [26] Xiangwan Du. Four factors describing of the beam quality of high-power lasers[C]. SPIE, 2005, 5777: 650~653
[27] [27] Wang Fang. Study on the transformable characteristic of 3ω laser beam quality from ICF driver[D]. China Academy of Engineering Physics, Masters dissertation, 2007
[28] [28] J. K. Lawson, J. M. Auerbach, R. E. English et al.. NIF optical specifications——The importance of RMS gradient[C]. SPIE, 1999, 3492: 336~343
[29] [29] J. M. Elosn, J. M. Bennett. Calculation of the power spectral density from surface profile data[J]. Appl. Opt., 1995, 43(1): 201~208
[30] [30] D. M. Aikens, C. R. Wolfe, J. K. Lawson. Use of power spectral density (PSD) functions in specifying optics for the National Ignition Facility[C]. SPIE, 1995, 2576: 281~291
[31] [31] J. K. Lawson, D. M. Aikens, R. E. English Jr. et al.. Power spectral density specifications for high-power laser systems[C]. SPIE, 1996, 2775: 345
[32] [32] P. J. Wegner, M. A. Hnesian, J. T. Salmon et al.. Wavefront and divergence of the beamlet prototype laser[C]. SPIE, 1999, 3492: 1019~1030
[34] [34] A. Garay. Continuous wave deuterium fluoride laser beam diagnostic system[C]. SPIE, 1998, 888: 17~22
[35] [35] G. D. Goodno, H. Komine, S. J. McNaught et al.. Coherent combination of high-power zig-zag slab lasers[J]. Opt. Lett., 2006, 31(9): 1247~1249
[36] [36] H. Weber. Propagation of higher-order intensity moments in quadratic-index media[J]. Opt. and Quantum Electron., 1992, 24(9): 1027~1049
[37] [37] R. Simon, E. C. G. Sudarshan, N. Mukunda. Generalized rays in first-order optics: Transformation properties of Gaussian Schell-model fields[J]. Phys. Rev. A, 1984, 29(6): 3273~3279
[39] [39] Lü Baida. Recent developments in novel high-power solid-state laser drivers for application to ICF and laser beam quality[J]. Laser Journal, 1999, 20(1): 1~8
[40] [40] C. Paré, P. A. Bélanger. Propagation law and quasi-invariance properties of the truncated second-order moment of a diffracted laser beam[J]. Opt. Commun., 1996, 123(4~6): 679~693
[41] [41] S. Amarande, A. Giesen, H. Hügel. Propagation analysis of self-convergent beam width and characterization of hard-edge diffracted beams[J]. Appl. Opt., 2000, 39(22): 3914~3924
[42] [42] M. Ibnchaikh, L. Dalil-Essakali, Z. Hricha et al.. Parametric characterization of truncated Hermite-cosh-Gaussian beams[J]. Opt. Commun., 2001, 190(1~6): 29~36
[43] [43] R. Martinez-Herrero, P. M. Mejias, M. Arias. Parametric characterization of coherent, lowest-order Gaussian beams propagating through hard-edged apertures[J]. Opt. Lett., 1995, 20(2): 124~126
[44] [44] B. M. van Wonterghem, J. A. Caird, C. E. Barker. Recent results of the National Ignition Facility beamlet demonstration project[R]. UCRL-JC-120917, 1995
[45] [45] P. J. Wegner, C. E. Barker, J. A. Caird. Third-harmonic performance of the beamlet prototype laser[C]. SPIE, 1996, 3047: 370~380
[46] [46] J. E. Rothenberg, J. M. Auerbach, S. N. Dixit. Focal spot conditioning for indirect drive on the NIF[C]. SPIE, 1998, 3492: 65~77
[47] [47] Chen Jiabin, Zheng Zhijian, Tang Daoyuan. A new measure to improve laser energy injection efficiency[J]. High Power Laser and Particle Beams, 1998, 10(2): 239~242
[48] [48] R. A. Zacharias, N. R. Beer, E. S. Bliss et al.. Alignment and wavefront control system of the National Ignition Facility[J]. Opt. Eng., 2004, 43(12): 2873~2884
[49] [49] Miguel A. Porras, Medina Rafael. Entropy-based definition of laser beam spot size[J]. Appl. Opt., 1995, 34(36): 8247~8251
[50] [50] Zhao Junpu. Study on high power solid-state laser beam quality diagnosis[D], Sichuan University, Master′s, dissertation, 2006
Get Citation
Copy Citation Text
Feng Guoying, Zhou Shouhuan. Discussion of Comprehensive Evaluation on Laser Beam Quality[J]. Chinese Journal of Lasers, 2009, 36(7): 1643