Infrared Technology, Volume. 43, Issue 3, 251(2021)
Super-resolution Enhancement of Infrared Images Using a Lightweight Dense Residual Network
[7] [7] Riegler G, Rther M, Bischof H. ATGV-Net: accurate depth super resolution[C]//Proc. Eur. Conf. Comput. Vis., 2016: 268-284.
[8] [8] SHI Y, LI S, LI W, et al. Fast and Lightweight Image Super-resolution based on dense residuals two-channel network[C]//2019 IEEE International Conference on Image Processing (ICIP), 2019: 2826-2830.
[9] [9] WANG Wei, JIANG Yongbin, LUO Yanhong, et al. An advanced deep residual dense network(DRDN) approach for image super-resolution[J]. International Journal of Computational Intelligence Systems, 2019, 12(2): 1592-1601.
[10] [10] WU Y, JI X, JI W, et al. CASR: a context-aware residual network for single-image super-resolution[J]. Neural Computing and Applications, 2019: 1-16.
[12] [12] HUI T, Loy C C, TANG X. Depth map super-resolution by deep multi-scale guidance[C]//Proc. Eur. Conf. Comput. Vis., 2016: 353-369.
[13] [13] QIU Y, WANG R, TAO D, et al. Embedded block residual network: a recursive restoration model for single-image super – resolution [C]//Proceedings of the IEEE International Conference on Computer Vision, 2019: 4180-4189.
[14] [14] CAO Y, HE Z, YE Z, et al. Fast and accurate single image super -resolution via an energy-aware improved deep residual network[J]. Signal Processing, 2019, 162: 115-125.
[15] [15] Anwar S, Barnes N. Densely residual Laplacian super-resolution[J/OL]. IEEE Transactions on Pattern Analysis and Machine Intelligence [2020-09-20](DOI: 10.1109/TPAMI.2020.3021088).
[16] [16] WANG Z, Chen J, Hoi S C H. Deep learning for image super-resolution: a survey[J/OL]. IEEE Trans Pattern Anal Mach Intell. [2020-09-20]. https://ieeexplore.ieee.org/document/9185010(doi: 10.1109/ TPAMI. 2020. 2982166).
[17] [17] LONG J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]// Proc. Conf. Comput. Vis. Pattern Recognit, 2015: 3431-3440.
[18] [18] HE K, ZHANG X, REN S, et al. Delving deep into rectifiers: Surpassing human-level performance on image net classification[C]//Proc. Int. Conf. Comput. Vis., 2015: 1026-1034.
[19] [19] Lim B, Son S, Kim H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017: 136-144.
[20] [20] HUI T W, Loy C C, TANG X. Depth map super-resolution by deep multi-scale guidance[C]//European Conference on Computer Vision, Springer, 2016: 353-369.
[21] [21] Guei A C, Akhloufi M. Deep learning enhancement of infrared face images using generative adversarial networks[J]. Applied Optics, 2018, 57(18): 98-107.
[22] [22] ZHANG X, LI C, MENG Q, et al. Infrared image super resolution by combining compressive sensing and deep learning[J]. Sensors, 2018, 18(8): 2587-2599.
Get Citation
Copy Citation Text
ZUO Cen, YANG Xiujie, ZHANG Jie, WANG Xuan. Super-resolution Enhancement of Infrared Images Using a Lightweight Dense Residual Network[J]. Infrared Technology, 2021, 43(3): 251
Category:
Received: May. 19, 2019
Accepted: --
Published Online: Apr. 15, 2021
The Author Email: Cen ZUO (xuzq1979@outlook.com)
CSTR:32186.14.