Journal of Quantum Optics, Volume. 30, Issue 4, 40801(2024)

Hole-based Graphene Hybrid Plasmonic Waveguide

YANG Shuang1,2,3, HE Xue-qing1,2, and LI Peng-fei1,2、*
Author Affiliations
  • 1Department of Physics, Taiyuan Normal University, Jinzhong 030619, China
  • 2Institute of Computational and Applied Physics, Taiyuan Normal University, Jinzhong 030619, China
  • 3College of Computer Science and Technology, Taiyuan Normal University, Jinzhong 030619, China
  • show less
    References(26)

    [1] [1] CHEN M, SHENG P C, SUN W, et al. A symmetric terahertz graphene-based hybrid plasmonic waveguide[J]. Optics Communications, 2016, 376: 41‒46. DOI: 10.1016/j.optcom.2016.05.020.

    [2] [2] HAN Z H, BOZHEVOLNYI S I. Radiation guiding with surface plasmon polaritons[J]. Reports on Progress in Physics, 2013, 76(1): 016402. DOI: 10.1088/0034-4885/76/1/016402.

    [3] [3] MURTADHA M H, JABBAR K M, SALAM M A. Design of 4×2 optical encoder utilizing nano-structure plasmonic IMI waveguides[J]. Optics Continuum, 2024, 3: 368‒378. DOI: 10.1364/OPTCON.517058.

    [5] [5] WANG Y D, WANG S L, CAI M, et al. A long propagation distance hybrid triangular prism waveguide for ultradeep subwavelength confinement[J]. IEEE Sensors Journal, 2019, 19(23): 11159‒11166. DOI: 10.1109/JSEN.2019.2935750.

    [6] [6] LU L, XU P, ZHANG L, et al. 1×2 graphene surface plasmon waveguide beam splitter based on self-imaging[J]. Nanomaterials, 2024, 14(18): 1538. DOI: 10.3390/nano14181538.

    [7] [7] CUI J, SUN Y, WANG L, et al. Graphene plasmonic waveguide based on a high-index dielectric wedge for compact photonic integration[J]. Optik, 2016, 127(1): 152‒155. DOI: 10.1016/j.ijleo.2015.10.040.

    [9] [9] SUN Y, ZHENG Z, CHENG J T, et al. Graphene surface plasmon waveguides incorporating high-index dielectric ridges for single mode transmission[J]. Optics Communications, 2014, 328: 124‒128. DOI: 10.1016/j.optcom.2014.04.069.

    [10] [10] ZHOU X T, ZHANG T, CHEN L, et al. A graphene-based hybrid plasmonic waveguide with ultra-deep subwavelength confinement[J]. Journal of Lightwave Technology, 2014, 32(21): 3597‒3601. DOI: 10.1109/jlt.2014.2350487.

    [11] [11] REZAEL M, RASEKH P, SAFIAN R. A stripe-assisted hybrid plasmonic waveguide for the propagation of terahertz waves[J]. IEEE Photon Technol Lett, 2015, 27(21): 2288‒2291. DOI: 10.1109/LPT.2015.2461636.

    [12] [12] ZHANG B, BIAN Y S, REN L Q, et al. Hybrid dielectric-loaded nanoridge plasmonic waveguide for low-loss light transmission at the subwavelength scale[J]. Sci Rep, 2017, 7(1): 40479. DOI: 10.1038/srep40479.

    [14] [14] HE X Q, NING T G, PEI L, et al. Deep subwavelength graphene-dielectric hybrid plasmonic waveguide for compact photonic integration[J]. Results in Physics, 2021, 21: 103834. DOI: 10.1016/j.rinp.2021.103834.

    [15] [15] ZHANG Q, PAN J B, WANG S L, et al. A triangle hybrid plasmonic waveguide with long propagation length for ultradeep subwavelength confinement[J]. Crystals, 2022, 12(1): 64. DOI: 10.3390/cryst12010064.

    [16] [16] WANG Y D, LIU H X, WANG S L, et al. Hybrid nanowire-rectangular plasmonic waveguide for subwavelength confinement at 1 550 nm[J]. Micromachines, 2022, 13(7): 1009. DOI: 10.3390/mi13071009.

    [17] [17] BIAN Y S, REN Q, KANG L, et al. Deep-subwavelength light transmission in hybrid nanowire-loaded silicon nano-rib waveguides[J]. Photonics Research, 2018, 6(1): 37‒45. DOI: 10.1364/PRJ.6.000037.

    [18] [18] WAN P, YANG C H, LIU Z. Channel hybrid plasmonic modes in dielectric-loaded graphene groove waveguides[J]. Optics Communications, 2018, 420: 72‒77. DOI: 10.1016/j.optcom.2018.03.031.

    [19] [19] CHEN L, LI X, WANG G P, et al. A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration[J]. Lightwave Technol, 2012, 30(1): 163‒168. DOI: 10.1109/JLT.2011.2179008.

    [20] [20] BIAN Y S, GONG Q H. Metallic-nanowire-loaded silicon-on-insulator structures: a route to low-loss plasmon waveguiding on the nanoscale[J]. Nanoscale, 2015, 7(10): 4415‒4422. DOI: 10.1039/c4nr06890d.

    [21] [21] OULTON R F, SORGER V J, GENOV D A, et al. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation[J]. Nature Photonics, 2008, 2(8): 496‒500. DOI: 10.1038/nphoton.2008.131.

    [22] [22] BIAN Y S, GONG Q H. Highly confined guiding of low-loss plasmon waves in hybrid metal-dielectric slot waveguides[J]. Nanotechnology, 2014, 25(34): 345201. DOI: 10.1088/0957-4484/25/34/345201.

    [23] [23] HE X Q, NING T G, LU S H, et al. Ultralow loss graphenebased hybrid plasmonic waveguide with deep-subwavelength confinement[J]. Optics Express, 2018, 26(8): 10109‒10118. DOI: 10.1364/OE.26.010109.

    [24] [24] HAN Z, BOZHEVOLNYI S I. Radiation guiding with surface plasmon polaritons[J]. Rep Prog Phys, 2013, 76(1): 016402. DOI: 10.1088/0034-4885/76/1/016402.

    [25] [25] DEAN C R, YOUNG A F, MERIC I, et al. Boron nitride substrates for high-quality graphene electronics[J]. Nature Nanotechnology, 2010, 5(10): 722‒726. DOI: 10.1038/nnano.2010.172.

    [26] [26] WOESSNER A, LUNDEBERG M B, GAO Y, et al. Highly confined low-loss plasmons in graphene-boron nitride heterostructures[J]. Nature Materials, 2015, 14(4): 421‒425. DOI: 10.1038/nmat4169.

    [27] [27] CASIRAGHI C, HARTSCHUH A, LIDORIKIS E, et al. Rayleigh imaging of graphene and graphene layers[J]. Nano Letters, 2007, 7(9): 2711‒2717. DOI: 10.1021/nl071168m.

    [28] [28] SMIRNOVA D A, SHADRIVOV L V, SMIRNOV A I, et al. Dissipative plasmon-solitons in multilayer graphene[J]. Laser & Photonics Reviews, 2014, 8(2): 291‒296. DOI: 10.1002/lpor.201300173.

    [29] [29] BAUMANN K, STOFERLE T, MOLL N, et al. Design and optical characterization of photonic crystal lasers with organic gain material[J]. Journal of Optics, 2010, 12(6): 065003. DOI: 10.1088/2040-8978/12/6/065003.

    Tools

    Get Citation

    Copy Citation Text

    YANG Shuang, HE Xue-qing, LI Peng-fei. Hole-based Graphene Hybrid Plasmonic Waveguide[J]. Journal of Quantum Optics, 2024, 30(4): 40801

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 26, 2024

    Accepted: Feb. 26, 2025

    Published Online: Feb. 26, 2025

    The Author Email: LI Peng-fei (17062@tynu.edu.cn)

    DOI:10.3788/jqo20243004.0801

    Topics