Laser & Optoelectronics Progress, Volume. 58, Issue 16, 1617002(2021)

Two-Stage Retinal Vessel Segmentation Based on Improved U-Net

Qianhong Cai, Yuhong Liu, and Rongfen Zhang*
Author Affiliations
  • College of Big Data and Information Engineering, Guizhou University, Guiyang, Guizhou 550025, China
  • show less
    Figures & Tables(17)
    Residual block
    Original U-Net codec module
    U-Net codec module with residual block
    Schematic of attention module
    AttResU-Net and Mini-AttResU-Net network structure diagrams
    Flow chart of retinal vessel segmentation
    Fundus image channel comparison maps. (a) RGB original image; (b) red channel; (c) green channel; (d) blue channel
    Image preprocessing. (a) Original color image; (b) original image after extracting the green channel; (c) image after CLAHE operation; (d) after rotating 90°; (e) after rotating 180°; (f) after rotating 270°; (g) after horizontal flip; (h) after vertical flip
    Segmentation results of proposed method on DRIVE database. (a) Original images; (b) ground truth images; (c) segmentation images
    Segmentation results of proposed method on STARE database. (a) Original images; (b) ground truth images; (c) segmentation images
    Local segmentation maps. (a) Original fundus images; (b) partial color fundus maps; (c) standard partial segmentation maps; (d) ours local segmentation maps
    Segmentation results of different methods on DRIVE database
    Segmentation results of different methods on STARE database
    • Table 1. Performance comparison of different segmentation methods based on U-Net network

      View table

      Table 1. Performance comparison of different segmentation methods based on U-Net network

      MethodPrecisionRecallF1-ScoreAccuracy
      M10.84750.82700.83730.9690
      M20.84430.83410.83920.9731
      M30.85240.84690.84970.9743
      M40.85630.86390.86090.9787
    • Table 2. Performance indicators of different methods in DRIVE database

      View table

      Table 2. Performance indicators of different methods in DRIVE database

      MethodYearPrecisionRecallF1-ScoreAccuracy
      U-Net[25] 20180.88520.75370.81420.9531
      Residual U-Net[25]20180.86140.77260.81490.9553
      Recurrent U-Net[25]20180.86030.77510.81550.9556
      R2 U-Net[25]20180.85890.77920.81710.9556
      Conditional GAN[20]20180.81430.82740.82080.9608
      LadderNet[21]20180.85930.78560.82080.9561
      DUNet[22]20190.85290.79630.82370.9566
      Dynamic Deep Networks[19]20190.82840.82350.82590.9693
      Ours20200.83310.83690.83510.9698
    • Table 3. Performance indicators of different methods in STARE database

      View table

      Table 3. Performance indicators of different methods in STARE database

      MethodYearPrecisionRecallF1-ScoreAccuracy
      U-Net[25]20180.84750.82700.83730.9690
      Residual U-Net[25]20180.85810.82030.83880.9700
      Recurrent U-Net[25]20180.87050.81080.83960.9706
      R2 U-Net[25]20180.86590.82980.84750.9712
      Conditional GAN[20]20180.84660.85380.85020.9771
      DUNet[22]20190.87770.75950.81430.9641
      Dynamic Deep Networks[19]20190.85590.85410.85490.9780
      Ours20200.85630.86390.86090.9787
    • Table 4. Comparison of inference time of different methods on two databases

      View table

      Table 4. Comparison of inference time of different methods on two databases

      MethodPlatformInference time /ms
      DRIVESTARE
      U-Net[25]NVIDIA GTX 1080Ti1817
      Residual U-Net[25]NVIDIA GTX 1080Ti1917
      R2 U-Net[25]NVIDIA GTX 1080Ti1715
      OursNVIDIA GTX 1080Ti1614
    Tools

    Get Citation

    Copy Citation Text

    Qianhong Cai, Yuhong Liu, Rongfen Zhang. Two-Stage Retinal Vessel Segmentation Based on Improved U-Net[J]. Laser & Optoelectronics Progress, 2021, 58(16): 1617002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Medical Optics and Biotechnology

    Received: Aug. 10, 2020

    Accepted: Dec. 17, 2020

    Published Online: Aug. 16, 2021

    The Author Email: Rongfen Zhang (rfzhang@gzu.edu.cn)

    DOI:10.3788/LOP202158.1617002

    Topics