Infrared Technology, Volume. 47, Issue 3, 385(2025)

An Object Detection Algorithm Based on Infrared-Visible Feature Enhancement and Fusion

Minglu LI1, Xiaoxia WANG1,2、*, Maoxin HOU3, and Fengbao YANG1,2
Author Affiliations
  • 1College of Information and Communications Engineering, North University of China, Taiyuan 030051, China
  • 2Key Laboratory of Intelligent Information Control Technology of Shanxi Province, Taiyuan 030051, China
  • 3Collective Intelligence & Collaboration Laboratory, Zhongbing Intelligent Innovation Research Institute Limited Liability Company, Beijing 100072, China
  • show less
    References(19)

    [1] [1] Ramachandran A, Sangaiah A K. A review on object detection in unmanned aerial vehicle surveillance[J]. International Journal of Cognitive Computing in Engineering, 2021, 2: 215-228.

    [2] [2] HU Y, SHI L, YAO L, et al. Dual attention feature fusion for visible-infrared object detection[C]//International Conference on Artificial Neural Networks, 2023: 53-65.

    [4] [4] Bustos N, Mashhadi M, Lai-Yuen S K, et al. A systematic literature review on object detection using near infrared and thermal images[J]. Neurocomputing, 2023, 560: 126804.

    [5] [5] YUE G, LI Z, TAO Y, et al. Low-illumination traffic object detection using the saliency region of infrared image masking on infrared-visible fusion image[J]. Journal of Electronic Imaging, 2022, 31(3): 033029-033029.

    [6] [6] LIU J, FAN X, HUANG Z, et al. Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 5802-5811.

    [7] [7] TANG Cong, LING Yongshun, YANG Hua, et al. Decision-level fusion detection for infrared and visible spectra based on deep learning[J]. Infrared and Laser Engineering, 2019, 48(6): 626001-0626001(15).

    [8] [8] SUN Y M, CAO B, ZHU P F, et al. Drone-based RGB-Infrared cross-modality vehicle detection via uncertainty-aware learning[J]. IEEE Transactions on Circuitsand Systems for Video Technology, 2022, 32: 6700-6713.

    [9] [9] GENG K K, ZOU W, YIN G D, et al. Low-observable targets detection for autonomous vehicles based on dual-modal sensor fusion with deep learning approach[J]. Journal of Automobile Engineering, 2019, 233(9): 2270-2283.

    [10] [10] XUE Y, JU Z, LI Y, et al. MAF-YOLO: Multi-modal attention fusion based YOLO for pedestrian detection[J]. Infrared Physics & Technology, 2021, 118: 103906.

    [11] [11] CHENG X, GENG K, WANG Z, et al. SLBAF-Net: Super-Lightweight bimodal adaptive fusion network for UAV detection in low recognition environment[J]. Multimedia Tools and Applications, 2023, 82(30): 47773-47792.

    [12] [12] SHEN J, CHEN Y, LIU Y, et al. ICAFusion: Iterative cross-attention guided feature fusion for multispectral object detection[J]. Pattern Recognition, 2024, 145: 109913.

    [13] [13] Bochkovskiy A, WANG C Y, LIAO H Y M. Yolov4: Optimal speed and accuracy of object detection[J]. arXiv preprint arXiv: 2004.10934, 2020.

    [14] [14] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.

    [15] [15] Woo S, Park J, Lee J Y, et al. Cbam: Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.

    [16] [16] CHEN Z, HE Z, LU Z M. DEA-Net: Single image dehazing based on detail-enhanced convolution and content-guided attention[J]. IEEE Transactions on Image Processing, 2024, 33: 1002-1015.

    [17] [17] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Neural Information Processing Systems, Neural Information Processing Systems, 2017, 30: 6000-6010.

    [18] [18] FANG Qingyun, HAN Dapeng, WANG Zhaokui. Cross-modality fusion transformer for multispectral object detection[J]. arXiv preprint arXiv: 2111.00273, 2021.

    [19] [19] Selvaraju R R, Cogswell M, Das A, et al. Grad-cam: Visual explanations from deep networks via gradient-based localization[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 618-626.

    [20] [20] WANG Q, WU B, ZHU P, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11534-11542.

    Tools

    Get Citation

    Copy Citation Text

    LI Minglu, WANG Xiaoxia, HOU Maoxin, YANG Fengbao. An Object Detection Algorithm Based on Infrared-Visible Feature Enhancement and Fusion[J]. Infrared Technology, 2025, 47(3): 385

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 14, 2024

    Accepted: Apr. 18, 2025

    Published Online: Apr. 18, 2025

    The Author Email: WANG Xiaoxia (wangxiaoxia@nuc.edu.cn)

    DOI:

    Topics