Journal of Inorganic Materials, Volume. 35, Issue 10, 1071(2020)
[1] WANG Q Y, WANG S, ZHANG J N et al. Overview of the failure analysis of lithium ion batteries[J]. Energy Storage Sci. Technol., 6, 1008(2017).
[2] BELOVA I V, MURCH G E. Thermal and diffusion-induced stresses in crystalline solids[J]. J. Appl. Phys., 77, 127-134(1995).
[3] ZHAO Y, STEIN P, BAI Y et al. A review on modeling of electro- chemo-mechanics in lithium-ion batteries[J]. J. Power Sources, 413, 259-283(2019).
[4] LI H L, SONG Y C, LU B et al. Effects of stress dependent electrochemical reaction on voltage hysteresis of lithium ion batteries[J]. Appl. Math. Mech-Engl., 39, 1453-1464(2018).
[5] LU Y J, CHE Q, SONG X et al. Stress self-relaxation arising from diffusion-induced creep in bilayer lithium-ion battery electrode[J]. Scr. Mater., 150, 164-167(2018).
[6] CHOI Z S, KRAMER D, MÖNIG R et al. Correlation of stress and structural evolution in Li4Ti5O12-based electrodes for lithium ion batteries[J]. J. Power Sources, 240, 245-251(2013).
[7] DAI Y L, CAI L, WHITE R E. Simulation and analysis of stress in a Li-ion battery with a blended LiMn2O4 and LiNi0.8Co0.15Al0.05O2 cathode[J]. J. Power Sources, 247, 365-376(2014).
[8] FU R J, XIAO M, CHOE S Y. Modeling, validation and analysis of mechanical stress generation and dimension changes of a pouch type high power Li-ion battery[J]. J. Power Sources, 224, 211-224(2013).
[9] MEI W X, DUAN Q L, QIN P et al. A three-dimensional electrochemical-mechanical model at the particle level for lithium-ion battery[J]. J. Electrochem. Soc., 166, A3319-A3331(2019).
[10] ZHANG X Y, CHEN H S, FANG D N. Diffusion-induced stress of electrode particles with spherically isotropic elastic properties in lithium-ion batteries[J]. J. Solid State Electrochem., 20, 2835-2845(2016).
[11] CHEN B B, ZHOU J Q, PANG X M et al. Fracture damage of nanowire lithium-ion battery electrode affected by diffusion- induced stress and bending during lithiation[J]. RSC Adv., 4, 21072-21078(2014).
[12] CHRISTENSEN J, NEWMAN J. Stress generation and fracture in lithium insertion materials[J]. J. Solid State Electrochem., 10, 293-319(2006).
[13] SUN H H, MANTHIRAM A. Impact of microcrack generation and surface degradation on a nickel-rich layered Li[Ni0.9Co0.05Mn0.05]O2 cathode for lithium-ion batteries[J]. Chem. Mater., 29, 8486-8493(2017).
[19] CHEN B B, ZHOU J Q, LIU Z. Effects of thermal diffusion in hollow lithium ion battery with spherical particle electrode[J]. J. Nanjing Tech. U.: NAT. SCI. ED., 38, 1-7(2016).
[24] RYU I, CHOI J W, CUI Y et al. Size-dependent fracture of Si nanowire battery anodes[J]. J. Mech. Phys. Solids, 59, 1717-1730(2011).
[25] HARDIN G R, ZHANG Y, FINCHER C D et al. Interfacial fracture of nanowire electrodes of lithium-ion batteries[J]. JOM, 69, 1-5(2017).
[27] CHANG S, MOON J, CHO K et al. Multiscale analysis of prelithiated silicon nanowire for Li-ion battery[J]. Comput. Mater. Sci., 98, 99-104(2015).
[28] PENG Y Z, ZHANG K, ZHENG B L. Stress analysis of a cylindrical composition-gradient electrode of lithium-ion battery in generalized plane strain condition[J]. Acta Phys. Sin., 65, 1-8(2016).
[29] PENG Y Z, LI Y, ZHENG B L et al. Influence of local velocity on diffusion-induced stress and axial reaction force in a hollow cylindrical electrode of lithium-ion batteries with considering expasion rate of medium[J]. Acta Phys. Sin., 67, 27-35(2018).
[30] DESHPANDE R, QI Y, CHENG Y T et al. Effects of concentration-dependent elastic modulus on diffusion-induced stresses for battery applications[J]. J. Electrochem. Soc., 157, A967-A971(2010).
[31] HAO F, FANG D. Diffusion-induced stresses of spherical core- shell electrodes in lithium-ion batteries: the effects of the shell and surface/interface stress[J]. J. Electrochem. Soc., 160, A595-A600(2013).
[32] SUN F N, FENG L, BU J H et al. Effect of stress on electrochemical performance of hollow carbon-coated silicon snode in lithium ion batteries[J]. Acta Phys. Sin., 68, 42-51(2019).
[33] HAO F, FANG D. Tailoring diffusion-induced stresses of core-shell nanotube electrodes in lithium-ion batteries[J]. J. Appl. Phys., 113, 013507(2013).
[34] ZHAO K J, PHARR M, HARTLE L et al. Fracture and debonding in lithium-ion batteries with electrodes of hollow core-shell nanostructures[J]. J. Power Sources, 218, 6-14(2012).
[35] DESHPANDE R, CHENG Y T, VERBRUGGE M W et al. Diffusion induced stresses and strain energy in a phase-transforming spherical electrode particle[J]. Electrochem. Soc., 158, A718-A724(2011).
[39] WEI P F, ZHOU J Q, DENG K J et al. Effect of dislocation on spherical particle electrode for lithium ion battery[J]. Chin. J. Power Sources, 719-722(2015).
[40] ZHU J W, ZHOU J Q, CHEN B B et al. Dislocation effect on diffusion-induced stress for lithiation in hollow spherical electrode[J]. J. Solid State Electrochem., 20, 37-46(2015).
[41] LI J, FANG Q H, LIU F et al. Analytical modeling of dislocation effect on diffusion induced stress in a cylindrical lithium ion battery electrode[J]. J. Power Sources, 272, 121-127(2014).
[42] ZHAO K J, PHARR M, VLASSAK J J et al. Fracture of electrodes in lithium-ion batteries caused by fast charging[J]. J. Appl. Phys., 108, 073517(2010).
[43] LU B, SONG Y C, ZHANG J Q. Selection of charge methods for lithium ion batteries by considering diffusion induced stress and charge time[J]. J. Power Sources, 320, 104-110(2016).
[44] ZHAO Y F, LÜ B. Stress evolution induced by charging shut-down in lithium-ion batteries[J]. J. Mech. Strength, 40, 77-82(2018).
[45] KIM S, HUANG H Y S. Mechanical stresses at the cathode- electrolyte interface in lithium-ion batteries[J]. J. Mater. Res., 31, 3506-3512(2016).
[46] JI L, GUO Z S. Analytical modeling and simulation of porous electrodes: Li-ion distribution and diffusion-induced stress[J]. Acta Mech. Sin., 34, 187-198(2018).
[47] JI L, GUO Z S, WU Y J. Computational and experimental observation of Li-ion concentration distribution and diffusion-induced stress in porous battery electrodes[J]. Energy Technol-Ger., 5, 1702-1711(2017).
[48] DIMITRIJEVIC B J, AIFANTIS K E, HACKL K. The influence of particle size and spacing on the fragmentation of nanocomposite anodes for Li batteries[J]. J. Power Sources, 206, 343-348(2012).
[49] XU R, ZHAO K J. Mechanical interactions regulated kinetics and morphology of composite electrodes in Li-ion batteries[J]. Extreme Mech. Lett., 8, 13-21(2016).
[50] MAI W J, YANG M, SOGHRATI S. A particle-resolved 3D finite element model to study the effect of cathode microstructure on the behavior of lithium ion batteries[J]. Electrochim. Acta, 294, 192-209(2019).
[51] RENGANATHAN S, SIKHA G, SANTHANAGOPALAN S et al. Theoretical analysis of stresses in a lithium ion cell[J]. J. Electrochem. Soc., 157, A155-A163(2010).
[52] RAHANI E K, SHENOY V B. Role of plastic deformation of binder on stress evolution during charging and discharging in lithium- ion battery negative electrodes[J]. J. Electrochem. Soc., 160, A1153-A1162(2013).
[53] MENDOZA H, ROBERTS S A, BRUNINI V E et al. Mechanical and electrochemical response of a LiCoO2 cathode using reconstructed microstructures[J]. Electrochim. Acta, 190, 1-15(2016).
[54] WU L M, XIAO X H, WEN Y H et al. Three-dimensional finite element study on stress generation in synchrotron X-ray tomography reconstructed nickel-manganese-cobalt based half cell[J]. J. Power Sources, 336, 8-18(2016).
[55] QI H R, FENG L, WANG S B et al. Stress relaxation through electrochemical diffusion in electrodes[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 46, 1-15(2016).
[56] LIU M. Finite element analysis of lithium insertion-induced expansion of a silicon thin film on a rigid substrate under potentiostatic operation[J]. J. Power Sources, 275, 760-768(2015).
[57] GAO Y F, ZHOU M. Coupled mechano-diffusional driving forces for fracture in electrode materials[J]. J. Power Sources, 230, 176-193(2013).
[58] CHEN B B, ZHOU J Q, ZHU J W et al. Diffusion induced stress and the distribution of dislocations in a nanostructured thin film electrode during lithiation[J]. RSC Adv., 4, 64216-64224(2014).
[59] WU B, LU W. A battery model that fully couples mechanics and electrochemistry at both particle and electrode levels by incorporation of particle interaction[J]. J. Power Sources, 360, 360-372(2017).
[60] ZHANG J Q, LÜ B, SONG Y C. A review of fracture in lithium- ion battery electrodes[J]. Chin. Quart. Mech., 38, 18-37(2017).
[61] JI L, GUO Z S, DU S Y et al. Stress induced by diffusion, curvature, and reversible electrochemical reaction in bilayer lithium-ion battery electrode plates[J]. Int. J. Mech. Sci., 134, 599-609(2017).
[62] SONG X, LU Y J, SHI M L et al. Effects of plastic deformation in current collector on lithium diffusion and stress in bilayer lithium- ion battery electrode[J]. Acta Phys. Sin., 67, 1-9(2018).
[63] SONG Y C, LI Z Z, ZHANG J Q. Reducing diffusion induced stress in planar electrodes by plastic shakedown and cyclic plasticity of current collector[J]. J. Power Sources, 263, 22-28(2014).
[64] LIU M, GAO C H, YANG F Q. Analysis of diffusion-induced delamination of an elastic-perfectly plastic film on a deformable substrate under potentiostatic operation[J]. Modell. Simul. Mater. Sci. Eng., 25, 065019(2017).
[65] LIU D Y, CHEN W Q, SHEN X D. Diffusion-induced stresses in an imperfect bilayer electrode of coin-shaped lithium-ion batteries[J]. Eur. J. Mech. A-Solid, 55, 167-180(2016).
[66] HAO F, FANG D N. Reducing diffusion-induced stresses of electrode- collector bilayer in lithium-ion battery by pre-strain[J]. J. Power Sources, 242, 415-420(2013).
[67] SONG Y C, LI Z Z, SOH A K et al. Diffusion of lithium ions and diffusion-induced stresses in a phase separating electrode under galvanostatic and potentiostatic operations: phase field simulations[J]. Mech. Mater., 91, 363-371(2015).
[68] LI Y, ZHANG J, ZHANG K et al. A defect-based viscoplastic model for large-deformed thin film electrode of lithium-ion battery[J]. Int. J. Plast., 115, 293-306(2019).
[69] HE Y L, HU H J, SONG Y C et al. Effects of concentration- dependent elastic modulus on the diffusion of lithium ions and diffusion induced stress in layered battery electrodes[J]. J. Power Sources, 248, 517-523(2014).
[70] LIU D Y, CHEN W Q, SHEN X D. Diffusion-induced stresses in graphene-based composite bilayer electrode of lithium-ion battery[J]. Compos. Struct., 165, 91-98(2017).
[71] ZHANG X Y, HAO F, CHEN H S et al. Diffusion-induced stress and delamination of layered electrode plates with composition- gradient[J]. Mech. Mater., 91, 351-362(2015).
[72] LU B, SONG Y C, GUO Z S et al. Modeling of progressive delamination in a thin film driven by diffusion-induced stresses[J]. Int. J. Solids Struct., 50, 2495-2507(2013).
[73] PAL S, DAMLE S S, KUMTA P N et al. Modeling of lithium segregation induced delamination of a-Si thin film anode in Li-ion batteries[J]. Comput. Mater. Sci., 79, 877-887(2013).
[74] HAFTBARADARAN H, XIAO X C, VERBRUGGE M W et al. Method to deduce the critical size for interfacial delamination of patterned electrode structures and application to lithiation of thin-film silicon islands[J]. J. Power Sources, 206, 357-366(2012).
[75] YANG L, CHEN H S, SONG W L et al.
[76] CHEN D, KRAMER D, MÖNIG R. Chemomechanical fatigue of LiMn1.95Al0.05O4 electrodes for lithium-ion batteries[J]. Electrochim. Acta, 259, 939-948(2018).
[77] XU R, YANG Y, YIN F et al. Heterogeneous damage in Li-ion batteries: experimental analysis and theoretical modeling[J]. J. Mech. Phys. Solids, 129, 160-183(2019).
[78] YIM T, CHOI S J, JO Y N et al. Effect of binder properties on electrochemical performance for silicon-graphite anode: method and application of binder screening[J]. Electrochim. Acta, 136, 112-120(2014).
[79] LI C L, SUN Q, JIANG J Y et al. Electrochemistry and morphology evolution of carbon micro-net films for rechargeable lithium ion batteries[J]. J. Phys. Chem. C, 112, 13782-13788(2008).
[80] LI J C, DOZIER A K, LI Y C et al. Crack pattern formation in thin film lithium-ion battery electrodes[J]. J. Electrochem. Soc., 158, A689-A694(2011).
[81] ZHANG J Z, ZHANG J, WANG D et al. Stress evolution in SiO electrodes for lithium-ion batteries during electrochemical cycling[J]. Mater. Lett., 190, 79-82(2017).
[84] ZHANG Z A, ZENG T, LAI Y Q et al. A comparative study of different binders and their effects on electrochemical properties of LiMn2O4 cathode in lithium ion batteries[J]. J. Power Sources, 247, 1-8(2014).
[85] SETHURAMAN V A, WINKLE N V, ABRAHAM D P et al. Real-time stress measurements in lithium-ion battery negative- electrodes[J]. J. Power Sources, 206, 334-342(2012).
[86] PHARR M, CHOI Y S, LEE D W et al. Measurements of stress and fracture in germanium electrodes of lithium-ion batteries during electrochemical lithiation and delithiation[J]. J. Power Sources, 304, 164-169(2016).
[87] SUTHAR B, NORTHROP P W C, RIFE D et al. Effect of porosity, thickness and tortuosity on capacity fade of anode[J]. J. Electrochem. Soc., 162, A1708-A1717(2015).
[88] YANG X G, BAUER C, WANG C Y. Sinusoidal current and stress evolutions in lithium-ion batteries[J]. J. Power Sources, 327, 414-422(2016).
[89] WU W, XIAO X R, WANG M et al. A microstructural resolved model for the stress analysis of lithium-ion batteries[J]. J. Electrochem. Soc., 161, A803-A813(2014).
[90] RIEGER B, ERHARD S V, KOSCH S et al. Multi-dimensional modeling of the influence of cell design on temperature, displacement and stress inhomogeneity in large-format lithium-ion cells[J]. J. Electrochem. Soc., 163, A3099-A3110(2016).
[91] RIEGER B, SCHUSTER S F, ERHARD S V et al. Multi-directional laser scanning as innovative method to detect local cell damage during fast charging of lithium-ion cells[J]. J. Energy Storage, 8, 1-5(2016).
[92] ZHANG L J, CHENG H Z, MENG D J. Experiment study on ETSS coupling mechanism and identification of key parameter for lithium-ion batteries[J]. J. Xi'an Jiaotong Univ., 51, 142-148(2017).
[93] YU C C, DAI H F. The stress measurement and analysis of the lithium-ion battery[J]. Mechatronics, 21, 14-17+32(2015).
[94] SAUERTEIG D, HANSELMANN N, ARZBERGER A et al. Electrochemical-mechanical coupled modeling and parameterization of swelling and ionic transport in lithium-ion batteries[J]. J. Power Sources, 378, 235-247(2018).
[95] BARAI A, TANGIRALA R, UDDIN K et al. The effect of external compressive loads on the cycle lifetime of lithium-ion pouch cells[J]. J. Energy Storage, 13, 211-219(2017).
[96] CANNARELLA J, ARNOLD C B. Stress evolution and capacity fade in constrained lithium-ion pouch cells[J]. J. Power Sources, 245, 745-751(2014).
[97] WÜNSCH M, KAUFMAN J, SAUER D U. Investigation of the influence of different bracing of automotive pouch cells on cyclic lifetime and impedance spectra[J]. J. Energy Storage, 21, 149-155(2019).
[98] LI R H, REN D S, GUO D X et al. Volume deformation of large-format lithium ion batteries under different degradation paths[J]. J. Electrochem. Soc., 166, A4106-A4114(2019).
[99] MUSSA A S, KLETT M, LINDBERGH G et al. Effects of external pressure on the performance and ageing of single-layer lithium- ion pouch cells[J]. J. Power Sources, 385, 18-26(2018).
[100] ZHANG J, HAN X, HU C J et al. An optimization of the pressing force applied onto the module structure of soft-package lithium-ion battery[J]. Automot. Eng., 38, 669-673+715(2016).
[101] PFRANG A, KERSYS A, KRISTON A et al. Long-term cycling induced jelly roll deformation in commercial 18650 cells[J]. J. Power Sources, 392, 168-175(2018).
[102] SCHUSTER S F, BACH T, FLEDER E et al. Nonlinear aging characteristics of lithium-ion cells under different operational conditions[J]. J. Energy Storage, 1, 44-53(2015).
[103] BACH T C, SCHUSTER S F, FLEDER E et al. Nonlinear aging of cylindrical lithium-ion cells linked to heterogeneous compression[J]. J. Energy Storage, 5, 212-223(2016).
Get Citation
Copy Citation Text
Yanan WANG, Hua LI, Zhengkun WANG, Qingfeng LI, Chen LIAN, Xin HE.
Category: REVIEW
Received: Dec. 6, 2019
Accepted: --
Published Online: Mar. 15, 2021
The Author Email: