Journal of Inorganic Materials, Volume. 35, Issue 10, 1071(2020)

Progress on Failure Mechanism of Lithium Ion Battery Caused by Diffusion Induced Stress

Yanan WANG1,2,3, Hua LI1,2,3, Zhengkun WANG1, Qingfeng LI1, Chen LIAN1, and Xin HE1
Author Affiliations
  • 1School of Mechanical Engineering, Shandong University, Jinan 250061, China
  • 2Key Laboratory of High-Efficiency and Clean Mechanical Manufacture of Ministry of Education, Shandong University, Jinan 250061, China
  • 3National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
  • show less
    References(103)

    [1] WANG Q Y, WANG S, ZHANG J N et al. Overview of the failure analysis of lithium ion batteries[J]. Energy Storage Sci. Technol., 6, 1008(2017).

    [2] BELOVA I V, MURCH G E. Thermal and diffusion-induced stresses in crystalline solids[J]. J. Appl. Phys., 77, 127-134(1995).

    [3] ZHAO Y, STEIN P, BAI Y et al. A review on modeling of electro- chemo-mechanics in lithium-ion batteries[J]. J. Power Sources, 413, 259-283(2019).

    [4] LI H L, SONG Y C, LU B et al. Effects of stress dependent electrochemical reaction on voltage hysteresis of lithium ion batteries[J]. Appl. Math. Mech-Engl., 39, 1453-1464(2018).

    [5] LU Y J, CHE Q, SONG X et al. Stress self-relaxation arising from diffusion-induced creep in bilayer lithium-ion battery electrode[J]. Scr. Mater., 150, 164-167(2018).

    [6] CHOI Z S, KRAMER D, MÖNIG R et al. Correlation of stress and structural evolution in Li4Ti5O12-based electrodes for lithium ion batteries[J]. J. Power Sources, 240, 245-251(2013).

    [7] DAI Y L, CAI L, WHITE R E. Simulation and analysis of stress in a Li-ion battery with a blended LiMn2O4 and LiNi0.8Co0.15Al0.05O2 cathode[J]. J. Power Sources, 247, 365-376(2014).

    [8] FU R J, XIAO M, CHOE S Y. Modeling, validation and analysis of mechanical stress generation and dimension changes of a pouch type high power Li-ion battery[J]. J. Power Sources, 224, 211-224(2013).

    [9] MEI W X, DUAN Q L, QIN P et al. A three-dimensional electrochemical-mechanical model at the particle level for lithium-ion battery[J]. J. Electrochem. Soc., 166, A3319-A3331(2019).

    [10] ZHANG X Y, CHEN H S, FANG D N. Diffusion-induced stress of electrode particles with spherically isotropic elastic properties in lithium-ion batteries[J]. J. Solid State Electrochem., 20, 2835-2845(2016).

    [11] CHEN B B, ZHOU J Q, PANG X M et al. Fracture damage of nanowire lithium-ion battery electrode affected by diffusion- induced stress and bending during lithiation[J]. RSC Adv., 4, 21072-21078(2014).

    [12] CHRISTENSEN J, NEWMAN J. Stress generation and fracture in lithium insertion materials[J]. J. Solid State Electrochem., 10, 293-319(2006).

    [13] SUN H H, MANTHIRAM A. Impact of microcrack generation and surface degradation on a nickel-rich layered Li[Ni0.9Co0.05Mn0.05]O2 cathode for lithium-ion batteries[J]. Chem. Mater., 29, 8486-8493(2017).

    [19] CHEN B B, ZHOU J Q, LIU Z. Effects of thermal diffusion in hollow lithium ion battery with spherical particle electrode[J]. J. Nanjing Tech. U.: NAT. SCI. ED., 38, 1-7(2016).

    [24] RYU I, CHOI J W, CUI Y et al. Size-dependent fracture of Si nanowire battery anodes[J]. J. Mech. Phys. Solids, 59, 1717-1730(2011).

    [25] HARDIN G R, ZHANG Y, FINCHER C D et al. Interfacial fracture of nanowire electrodes of lithium-ion batteries[J]. JOM, 69, 1-5(2017).

    [27] CHANG S, MOON J, CHO K et al. Multiscale analysis of prelithiated silicon nanowire for Li-ion battery[J]. Comput. Mater. Sci., 98, 99-104(2015).

    [28] PENG Y Z, ZHANG K, ZHENG B L. Stress analysis of a cylindrical composition-gradient electrode of lithium-ion battery in generalized plane strain condition[J]. Acta Phys. Sin., 65, 1-8(2016).

    [29] PENG Y Z, LI Y, ZHENG B L et al. Influence of local velocity on diffusion-induced stress and axial reaction force in a hollow cylindrical electrode of lithium-ion batteries with considering expasion rate of medium[J]. Acta Phys. Sin., 67, 27-35(2018).

    [30] DESHPANDE R, QI Y, CHENG Y T et al. Effects of concentration-dependent elastic modulus on diffusion-induced stresses for battery applications[J]. J. Electrochem. Soc., 157, A967-A971(2010).

    [31] HAO F, FANG D. Diffusion-induced stresses of spherical core- shell electrodes in lithium-ion batteries: the effects of the shell and surface/interface stress[J]. J. Electrochem. Soc., 160, A595-A600(2013).

    [32] SUN F N, FENG L, BU J H et al. Effect of stress on electrochemical performance of hollow carbon-coated silicon snode in lithium ion batteries[J]. Acta Phys. Sin., 68, 42-51(2019).

    [33] HAO F, FANG D. Tailoring diffusion-induced stresses of core-shell nanotube electrodes in lithium-ion batteries[J]. J. Appl. Phys., 113, 013507(2013).

    [34] ZHAO K J, PHARR M, HARTLE L et al. Fracture and debonding in lithium-ion batteries with electrodes of hollow core-shell nanostructures[J]. J. Power Sources, 218, 6-14(2012).

    [35] DESHPANDE R, CHENG Y T, VERBRUGGE M W et al. Diffusion induced stresses and strain energy in a phase-transforming spherical electrode particle[J]. Electrochem. Soc., 158, A718-A724(2011).

    [39] WEI P F, ZHOU J Q, DENG K J et al. Effect of dislocation on spherical particle electrode for lithium ion battery[J]. Chin. J. Power Sources, 719-722(2015).

    [40] ZHU J W, ZHOU J Q, CHEN B B et al. Dislocation effect on diffusion-induced stress for lithiation in hollow spherical electrode[J]. J. Solid State Electrochem., 20, 37-46(2015).

    [41] LI J, FANG Q H, LIU F et al. Analytical modeling of dislocation effect on diffusion induced stress in a cylindrical lithium ion battery electrode[J]. J. Power Sources, 272, 121-127(2014).

    [42] ZHAO K J, PHARR M, VLASSAK J J et al. Fracture of electrodes in lithium-ion batteries caused by fast charging[J]. J. Appl. Phys., 108, 073517(2010).

    [43] LU B, SONG Y C, ZHANG J Q. Selection of charge methods for lithium ion batteries by considering diffusion induced stress and charge time[J]. J. Power Sources, 320, 104-110(2016).

    [44] ZHAO Y F, LÜ B. Stress evolution induced by charging shut-down in lithium-ion batteries[J]. J. Mech. Strength, 40, 77-82(2018).

    [45] KIM S, HUANG H Y S. Mechanical stresses at the cathode- electrolyte interface in lithium-ion batteries[J]. J. Mater. Res., 31, 3506-3512(2016).

    [46] JI L, GUO Z S. Analytical modeling and simulation of porous electrodes: Li-ion distribution and diffusion-induced stress[J]. Acta Mech. Sin., 34, 187-198(2018).

    [47] JI L, GUO Z S, WU Y J. Computational and experimental observation of Li-ion concentration distribution and diffusion-induced stress in porous battery electrodes[J]. Energy Technol-Ger., 5, 1702-1711(2017).

    [48] DIMITRIJEVIC B J, AIFANTIS K E, HACKL K. The influence of particle size and spacing on the fragmentation of nanocomposite anodes for Li batteries[J]. J. Power Sources, 206, 343-348(2012).

    [49] XU R, ZHAO K J. Mechanical interactions regulated kinetics and morphology of composite electrodes in Li-ion batteries[J]. Extreme Mech. Lett., 8, 13-21(2016).

    [50] MAI W J, YANG M, SOGHRATI S. A particle-resolved 3D finite element model to study the effect of cathode microstructure on the behavior of lithium ion batteries[J]. Electrochim. Acta, 294, 192-209(2019).

    [51] RENGANATHAN S, SIKHA G, SANTHANAGOPALAN S et al. Theoretical analysis of stresses in a lithium ion cell[J]. J. Electrochem. Soc., 157, A155-A163(2010).

    [52] RAHANI E K, SHENOY V B. Role of plastic deformation of binder on stress evolution during charging and discharging in lithium- ion battery negative electrodes[J]. J. Electrochem. Soc., 160, A1153-A1162(2013).

    [53] MENDOZA H, ROBERTS S A, BRUNINI V E et al. Mechanical and electrochemical response of a LiCoO2 cathode using reconstructed microstructures[J]. Electrochim. Acta, 190, 1-15(2016).

    [54] WU L M, XIAO X H, WEN Y H et al. Three-dimensional finite element study on stress generation in synchrotron X-ray tomography reconstructed nickel-manganese-cobalt based half cell[J]. J. Power Sources, 336, 8-18(2016).

    [55] QI H R, FENG L, WANG S B et al. Stress relaxation through electrochemical diffusion in electrodes[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 46, 1-15(2016).

    [56] LIU M. Finite element analysis of lithium insertion-induced expansion of a silicon thin film on a rigid substrate under potentiostatic operation[J]. J. Power Sources, 275, 760-768(2015).

    [57] GAO Y F, ZHOU M. Coupled mechano-diffusional driving forces for fracture in electrode materials[J]. J. Power Sources, 230, 176-193(2013).

    [58] CHEN B B, ZHOU J Q, ZHU J W et al. Diffusion induced stress and the distribution of dislocations in a nanostructured thin film electrode during lithiation[J]. RSC Adv., 4, 64216-64224(2014).

    [59] WU B, LU W. A battery model that fully couples mechanics and electrochemistry at both particle and electrode levels by incorporation of particle interaction[J]. J. Power Sources, 360, 360-372(2017).

    [60] ZHANG J Q, LÜ B, SONG Y C. A review of fracture in lithium- ion battery electrodes[J]. Chin. Quart. Mech., 38, 18-37(2017).

    [61] JI L, GUO Z S, DU S Y et al. Stress induced by diffusion, curvature, and reversible electrochemical reaction in bilayer lithium-ion battery electrode plates[J]. Int. J. Mech. Sci., 134, 599-609(2017).

    [62] SONG X, LU Y J, SHI M L et al. Effects of plastic deformation in current collector on lithium diffusion and stress in bilayer lithium- ion battery electrode[J]. Acta Phys. Sin., 67, 1-9(2018).

    [63] SONG Y C, LI Z Z, ZHANG J Q. Reducing diffusion induced stress in planar electrodes by plastic shakedown and cyclic plasticity of current collector[J]. J. Power Sources, 263, 22-28(2014).

    [64] LIU M, GAO C H, YANG F Q. Analysis of diffusion-induced delamination of an elastic-perfectly plastic film on a deformable substrate under potentiostatic operation[J]. Modell. Simul. Mater. Sci. Eng., 25, 065019(2017).

    [65] LIU D Y, CHEN W Q, SHEN X D. Diffusion-induced stresses in an imperfect bilayer electrode of coin-shaped lithium-ion batteries[J]. Eur. J. Mech. A-Solid, 55, 167-180(2016).

    [66] HAO F, FANG D N. Reducing diffusion-induced stresses of electrode- collector bilayer in lithium-ion battery by pre-strain[J]. J. Power Sources, 242, 415-420(2013).

    [67] SONG Y C, LI Z Z, SOH A K et al. Diffusion of lithium ions and diffusion-induced stresses in a phase separating electrode under galvanostatic and potentiostatic operations: phase field simulations[J]. Mech. Mater., 91, 363-371(2015).

    [68] LI Y, ZHANG J, ZHANG K et al. A defect-based viscoplastic model for large-deformed thin film electrode of lithium-ion battery[J]. Int. J. Plast., 115, 293-306(2019).

    [69] HE Y L, HU H J, SONG Y C et al. Effects of concentration- dependent elastic modulus on the diffusion of lithium ions and diffusion induced stress in layered battery electrodes[J]. J. Power Sources, 248, 517-523(2014).

    [70] LIU D Y, CHEN W Q, SHEN X D. Diffusion-induced stresses in graphene-based composite bilayer electrode of lithium-ion battery[J]. Compos. Struct., 165, 91-98(2017).

    [71] ZHANG X Y, HAO F, CHEN H S et al. Diffusion-induced stress and delamination of layered electrode plates with composition- gradient[J]. Mech. Mater., 91, 351-362(2015).

    [72] LU B, SONG Y C, GUO Z S et al. Modeling of progressive delamination in a thin film driven by diffusion-induced stresses[J]. Int. J. Solids Struct., 50, 2495-2507(2013).

    [73] PAL S, DAMLE S S, KUMTA P N et al. Modeling of lithium segregation induced delamination of a-Si thin film anode in Li-ion batteries[J]. Comput. Mater. Sci., 79, 877-887(2013).

    [74] HAFTBARADARAN H, XIAO X C, VERBRUGGE M W et al. Method to deduce the critical size for interfacial delamination of patterned electrode structures and application to lithiation of thin-film silicon islands[J]. J. Power Sources, 206, 357-366(2012).

    [75] YANG L, CHEN H S, SONG W L et al. In situ optical observations and simulations on defect induced failure of silicon island anodes[J]. J. Power Sources, 405, 101-105(2018).

    [76] CHEN D, KRAMER D, MÖNIG R. Chemomechanical fatigue of LiMn1.95Al0.05O4 electrodes for lithium-ion batteries[J]. Electrochim. Acta, 259, 939-948(2018).

    [77] XU R, YANG Y, YIN F et al. Heterogeneous damage in Li-ion batteries: experimental analysis and theoretical modeling[J]. J. Mech. Phys. Solids, 129, 160-183(2019).

    [78] YIM T, CHOI S J, JO Y N et al. Effect of binder properties on electrochemical performance for silicon-graphite anode: method and application of binder screening[J]. Electrochim. Acta, 136, 112-120(2014).

    [79] LI C L, SUN Q, JIANG J Y et al. Electrochemistry and morphology evolution of carbon micro-net films for rechargeable lithium ion batteries[J]. J. Phys. Chem. C, 112, 13782-13788(2008).

    [80] LI J C, DOZIER A K, LI Y C et al. Crack pattern formation in thin film lithium-ion battery electrodes[J]. J. Electrochem. Soc., 158, A689-A694(2011).

    [81] ZHANG J Z, ZHANG J, WANG D et al. Stress evolution in SiO electrodes for lithium-ion batteries during electrochemical cycling[J]. Mater. Lett., 190, 79-82(2017).

    [84] ZHANG Z A, ZENG T, LAI Y Q et al. A comparative study of different binders and their effects on electrochemical properties of LiMn2O4 cathode in lithium ion batteries[J]. J. Power Sources, 247, 1-8(2014).

    [85] SETHURAMAN V A, WINKLE N V, ABRAHAM D P et al. Real-time stress measurements in lithium-ion battery negative- electrodes[J]. J. Power Sources, 206, 334-342(2012).

    [86] PHARR M, CHOI Y S, LEE D W et al. Measurements of stress and fracture in germanium electrodes of lithium-ion batteries during electrochemical lithiation and delithiation[J]. J. Power Sources, 304, 164-169(2016).

    [87] SUTHAR B, NORTHROP P W C, RIFE D et al. Effect of porosity, thickness and tortuosity on capacity fade of anode[J]. J. Electrochem. Soc., 162, A1708-A1717(2015).

    [88] YANG X G, BAUER C, WANG C Y. Sinusoidal current and stress evolutions in lithium-ion batteries[J]. J. Power Sources, 327, 414-422(2016).

    [89] WU W, XIAO X R, WANG M et al. A microstructural resolved model for the stress analysis of lithium-ion batteries[J]. J. Electrochem. Soc., 161, A803-A813(2014).

    [90] RIEGER B, ERHARD S V, KOSCH S et al. Multi-dimensional modeling of the influence of cell design on temperature, displacement and stress inhomogeneity in large-format lithium-ion cells[J]. J. Electrochem. Soc., 163, A3099-A3110(2016).

    [91] RIEGER B, SCHUSTER S F, ERHARD S V et al. Multi-directional laser scanning as innovative method to detect local cell damage during fast charging of lithium-ion cells[J]. J. Energy Storage, 8, 1-5(2016).

    [92] ZHANG L J, CHENG H Z, MENG D J. Experiment study on ETSS coupling mechanism and identification of key parameter for lithium-ion batteries[J]. J. Xi'an Jiaotong Univ., 51, 142-148(2017).

    [93] YU C C, DAI H F. The stress measurement and analysis of the lithium-ion battery[J]. Mechatronics, 21, 14-17+32(2015).

    [94] SAUERTEIG D, HANSELMANN N, ARZBERGER A et al. Electrochemical-mechanical coupled modeling and parameterization of swelling and ionic transport in lithium-ion batteries[J]. J. Power Sources, 378, 235-247(2018).

    [95] BARAI A, TANGIRALA R, UDDIN K et al. The effect of external compressive loads on the cycle lifetime of lithium-ion pouch cells[J]. J. Energy Storage, 13, 211-219(2017).

    [96] CANNARELLA J, ARNOLD C B. Stress evolution and capacity fade in constrained lithium-ion pouch cells[J]. J. Power Sources, 245, 745-751(2014).

    [97] WÜNSCH M, KAUFMAN J, SAUER D U. Investigation of the influence of different bracing of automotive pouch cells on cyclic lifetime and impedance spectra[J]. J. Energy Storage, 21, 149-155(2019).

    [98] LI R H, REN D S, GUO D X et al. Volume deformation of large-format lithium ion batteries under different degradation paths[J]. J. Electrochem. Soc., 166, A4106-A4114(2019).

    [99] MUSSA A S, KLETT M, LINDBERGH G et al. Effects of external pressure on the performance and ageing of single-layer lithium- ion pouch cells[J]. J. Power Sources, 385, 18-26(2018).

    [100] ZHANG J, HAN X, HU C J et al. An optimization of the pressing force applied onto the module structure of soft-package lithium-ion battery[J]. Automot. Eng., 38, 669-673+715(2016).

    [101] PFRANG A, KERSYS A, KRISTON A et al. Long-term cycling induced jelly roll deformation in commercial 18650 cells[J]. J. Power Sources, 392, 168-175(2018).

    [102] SCHUSTER S F, BACH T, FLEDER E et al. Nonlinear aging characteristics of lithium-ion cells under different operational conditions[J]. J. Energy Storage, 1, 44-53(2015).

    [103] BACH T C, SCHUSTER S F, FLEDER E et al. Nonlinear aging of cylindrical lithium-ion cells linked to heterogeneous compression[J]. J. Energy Storage, 5, 212-223(2016).

    Tools

    Get Citation

    Copy Citation Text

    Yanan WANG, Hua LI, Zhengkun WANG, Qingfeng LI, Chen LIAN, Xin HE. Progress on Failure Mechanism of Lithium Ion Battery Caused by Diffusion Induced Stress[J]. Journal of Inorganic Materials, 2020, 35(10): 1071

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: REVIEW

    Received: Dec. 6, 2019

    Accepted: --

    Published Online: Mar. 15, 2021

    The Author Email:

    DOI:10.15541/jim20190622

    Topics