Chinese Journal of Liquid Crystals and Displays, Volume. 37, Issue 2, 186(2022)

Research progress in light-driven oscillators of liquid-crystalline polymers

WANG Jian-chuang*, WANG Wen-zhong, and YU Hai-feng
Author Affiliations
  • [in Chinese]
  • show less
    References(56)

    [1] [1] RUS D, TOLLEY M T. Design, fabrication and control of soft robots [J]. Nature, 2015, 521(7553): 467-475.

    [2] [2] WEHNER M, TRUBY R L, FITZGERALD D J, et al. An integrated design and fabrication strategy for entirely soft, autonomous robots [J]. Nature, 2016, 536(7617): 451-455.

    [3] [3] KIM J, KIM J W, KIM H C, et al. Review of soft actuator materials [J]. International Journal of Precision Engineering and Manufacturing, 2019, 20(12): 2221-2241.

    [4] [4] LEE C, KIM M, KIM Y J, et al. Soft robot review [J]. International Journal of Control, Automation and Systems, 2017, 15(1): 3-15.

    [5] [5] YANG H, LEOW W R, WANG T, et al. 3D printed photoresponsive devices based on shape memory composites [J]. Advanced Materials, 2017, 29(33): 1701627.

    [6] [6] VATANKHAH-VARNOOSFADERANI M, DANIEL W F M, ZHUSHMA A P, et al. Bottlebrush elastomers: a new platform for freestanding electroactuation [J]. Advanced Materials, 2017, 29(2): 1604209.

    [8] [8] YU Y L, NAKANO M, IKEDA T. Photoinduced bending and unbending behavior of liquid-crystalline gels and elastomers [J]. Pure and Applied Chemistry, 2004, 76(7/8): 1467-1477.

    [9] [9] WHITE T J, BROER D J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers [J]. Nature Materials, 2015, 14(11): 1087-1098.

    [10] [10] PANG X L, LV J A, ZHU C Y, et al. Photodeformable azobenzene-containing liquid crystal polymers and soft actuators [J]. Advanced Materials, 2019, 31(52): 1904224.

    [11] [11] QIN L, LIU X J, YU Y L. Soft actuators of liquid crystal polymers fueled by light from ultraviolet to near infrared [J]. Advanced Optical Materials, 2021, 9(7): 2001743.

    [12] [12] HU W Q, LUM G Z, MASTRANGELI M, et al. Small-scale soft-bodied robot with multimodal locomotion [J]. Nature, 2018, 554(7690): 81-85.

    [13] [13] SANO K, ISHIDA Y, AIDA T. Synthesis of anisotropic hydrogels and their applications [J]. Angewandte Chemie International Edition, 2018, 57(10): 2532-2543.

    [14] [14] YOSHIDA R. Self-oscillating gels driven by the belousov-zhabotinsky reaction as novel smart materials [J]. Advanced Materials, 2010, 22(31): 3463-3483.

    [15] [15] MERINDOL R, WALTHER A. Materials learning from life: concepts for active, adaptive and autonomous molecular systems [J]. Chemical Society Reviews, 2017, 46(18): 5588-5619.

    [16] [16] JENKINS A. Self-oscillation [J]. Physics Reports, 2013, 525(2): 167-222.

    [17] [17] CHENG Q B, LIANG X D, LI K. Light-powered self-excited motion of a liquid crystal elastomer rotator [J]. Nonlinear Dynamics, 2021, 103(3): 2437-2449.

    [18] [18] HUANG H B, AIDA T. Towards molecular motors in unison [J]. Nature Nanotechnology, 2019, 14(5): 407.

    [19] [19] MAEDA S, HARA Y, SAKAI T, et al. Self-walking gel [J]. Advanced Materials, 2007, 19(21): 3480-3484.

    [20] [20] SERAK S, TABIRYAN N, VERGARA R, et al. Liquid crystalline polymer cantilever oscillators fueled by light [J]. Soft Matter, 2010, 6(4): 779-783.

    [21] [21] UCHIDA E, AZUMI R, NORIKANE Y. Light-induced crawling of crystals on a glass surface [J]. Nature Communications, 2015, 6: 7310.

    [22] [22] WANG X Q, TAN C F, CHAN K H, et al. In-built thermo-mechanical cooperative feedback mechanism for self-propelled multimodal locomotion and electricity generation [J]. Nature Communications, 2018, 9(1): 3438.

    [23] [23] KUMAR K, KNIE C, BLGER D, et al. A chaotic self-oscillating sunlight-driven polymer actuator [J]. Nature Communications, 2016, 7: 11975.

    [24] [24] HE X M, AIZENBERG M, KUKSENOK O, et al. Synthetic homeostatic materials with chemo-mechano-chemical self-regulation [J]. Nature, 2012, 487(7406): 214-218.

    [25] [25] YOSHIDA R, UCHIDA K, KANEKO Y, et al. Comb-type grafted hydrogels with rapid deswelling response to temperature changes [J]. Nature, 1995, 374(6519): 240-242.

    [26] [26] TABATA O, HIRASAWA H, AOKI S, et al. Ciliary motion actuator using self-oscillating gel [J]. Sensors and Actuators A: Physical, 2002, 95(2/3): 234-238.

    [27] [27] SHINOHARA S I, SEKI T, SAKAI T, et al. Photoregulated wormlike motion of a gel [J]. Angewandte Chemie International Edition, 2008, 47(47): 9039-9043.

    [28] [28] WANG X J, ZHOU Q F. Liquid Crystalline Polymers [M]. Singapore: World Scientific, 2004: 1-4.

    [31] [31] IKEDA T, MAMIYA J I, YU Y L. Photomechanics of liquid-crystalline elastomers and other polymers [J]. Angewandte Chemie International Edition, 2007, 46(4): 506-528.

    [32] [32] YU H F, IKEDA T. Photocontrollable liquid-crystalline actuators [J]. Advanced Materials, 2011, 23(19): 2149-2180.

    [33] [33] LU C, YANG Y, WANG J, et al. High-performance graphdiyne-based electrochemical actuators [J]. Nature Communications, 2018, 9(1): 752.

    [34] [34] AHN C, LI K, CAI S Q. Light or thermally powered autonomous rolling of an elastomer rod [J]. ACS Applied Materials & Interfaces, 2018, 10(30): 25689-25696.

    [35] [35] YUNAS J, MULYANTI B, HAMIDAH I, et al. Polymer-based mems electromagnetic actuator for biomedical application: a review [J]. Polymers, 2020, 12(5): 1184.

    [36] [36] SUN Z F, YAMAUCHI Y, ARAOKA F, et al. An anisotropic hydrogel actuator enabling earthworm-like directed peristaltic crawling [J]. Angewandte Chemie International Edition, 2018, 57(48): 15772-15776.

    [37] [37] LI M T, WANG X, DONG B, et al. In-air fast response and high speed jumping and rolling of a light-driven hydrogel actuator [J]. Nature Communications, 2020, 11(1): 3988.

    [38] [38] ILIEVSKI F, MAZZEO A D, SHEPHERD R F, et al. Soft robotics for chemists [J]. Angewandte Chemie International Edition, 2011, 50(8): 1890-1895.

    [39] [39] JEON J, CHOI J C, LEE H, et al. Continuous and programmable photomechanical jumping of polymer monoliths [J]. Materials Today, 2021, 49: 97-106.

    [40] [40] HU Y, LI Z, LAN T, et al. Photoactuators for direct optical-to-mechanical energy conversion: from nanocomponent assembly to macroscopic deformation [J]. Advanced Materials, 2016, 28(47): 10548-10556.

    [41] [41] STOYCHEV G, KIRILLOVA A, IONOV L. Light-responsive shape-changing polymers [J]. Advanced Optical Materials, 2019, 7(16): 1900067.

    [42] [42] BISOYI H K, URBAS A M, LI Q. Soft materials driven by photothermal effect and their applications [J]. Advanced Optical Materials, 2018, 6(15): 1800458.

    [43] [43] LAN R C, SUN J, SHEN C, et al. Near-infrared photodriven self-sustained oscillation of liquid-crystalline network film with predesignated polydopamine coating [J]. Advanced Materials, 2020, 32(14): 1906319.

    [44] [44] ZENG H, LAHIKAINEN M, LIU L, et al. Light-fuelled freestyle self-oscillators [J]. Nature Communications, 2019, 10(1): 5057.

    [46] [46] WANG J C, HUANG S, ZHANG Y H, et al. Hydrogen bond enhances photomechanical swing of liquid-crystalline polymer bilayer films [J]. ACS Applied Materials & Interfaces, 2021, 13(5): 6585-6596.

    [47] [47] MA S D, LI X, HUANG S, et al. A light-activated polymer composite enables on-demand photocontrolled motion: transportation at the liquid/air interface [J]. Angewandte Chemie, 2019, 131(9): 2681-2685.

    [48] [48] LI X, MA S D, HU J, et al. Photo-activated bimorph composites of kapton and liquid-crystalline polymer towards biomimetic circadian rhythms of Albizia julibrissin leaves [J]. Journal of Materials Chemistry C, 2019, 7(3): 622-629.

    [49] [49] WEIGERT F. ber einen neuen effekt der strahlung in lichtempfindlichen schichten [M]//Verhandlungen der Deutschen Physikalischen Gesellschaft 21. 1919: 479-491.

    [50] [50] WHITE T J, TABIRYAN N V, SERAK S V, et al. A high frequency photodriven polymer oscillator [J]. Soft Matter, 2008, 4(9): 1796-1798.

    [51] [51] WANG J C, SONG T F, ZHANG Y H, et al. Light-driven autonomous self-oscillation of a liquid-crystalline polymer bimorph actuator [J]. Journal of Materials Chemistry C, 2021, 9(37): 12573-12580.

    [52] [52] YU L, YU H F. Light-powered tumbler movement of graphene oxide/polymer nanocomposites [J]. ACS Applied Materials & Interfaces, 2015, 7(6): 3834-3839.

    [53] [53] GELEBART A H, VANTOMME G, MEIJER E W, et al. Mastering the photothermal effect in liquid crystal networks: a general approach for self-sustained mechanical oscillators [J]. Advanced Materials, 2017, 29(18): 1606712.

    [54] [54] VANTOMME G, ELANDS L C M, GELEBART A H, et al. Coupled liquid crystalline oscillators in Huygens’ synchrony [J]. Nature Materials, 2021, 20(12): 1702-1706.

    [55] [55] SUN J, HU W, ZHANG L Y, et al. Light-driven self-oscillating behavior of liquid-crystalline networks triggered by dynamic isomerization of molecular motors [J]. Advanced Functional Materials, 2021, 31(33): 2103311.

    [56] [56] TANG R, LIU Z Y, XU D D, et al. Optical pendulum generator based on photomechanical liquid-crystalline actuators [J]. ACS Applied Materials & Interfaces, 2015, 7(16): 8393-8397.

    [57] [57] HU Z M, LI Y L, LV J A. Phototunable self-oscillating system driven by a self-winding fiber actuator [J]. Nature Communications, 2021, 12(1): 3211.

    [58] [58] YAMADA M, KONDO M, MAMIYA J I, et al. Photomobile polymer materials: towards light-driven plastic motors [J]. Angewandte Chemie, 2008, 120(27): 5064-5066.

    [59] [59] VANTOMME G, GELEBART A H, BROER D J, et al. A four-blade light-driven plastic mill based on hydrazone liquid-crystal networks [J]. Tetrahedron, 2017, 73(33): 4963-4967.

    [60] [60] SONG T F, LEI H Y, CLANCY A J, et al. Supramolecular hydrogen bond enables Kapton nanofibers to reinforce liquid-crystalline polymers for light-fueled flight [J]. Nano Energy, 2021, 87: 106207.

    Tools

    Get Citation

    Copy Citation Text

    WANG Jian-chuang, WANG Wen-zhong, YU Hai-feng. Research progress in light-driven oscillators of liquid-crystalline polymers[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(2): 186

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 9, 2021

    Accepted: --

    Published Online: Mar. 1, 2022

    The Author Email: WANG Jian-chuang (wangjianchuang2009@163.com)

    DOI:10.37188/cjlcd.2021-0253

    Topics