Computer Engineering, Volume. 51, Issue 8, 39(2025)
Research on Application of Blockchain in BGP Route Leakage Prevention
[1] [1] GILL P, SCHAPIRA M, GOLDBERG S. A survey of interdomain routing policies[J]. ACM SIGCOMM Computer Communication Review, 2013, 44(1): 28-34.
[2] [2] XIANG Q, ZHANG J X, GAO K, et al. Toward optimal software-defined interdomain routing[C]//Proceedings of the IEEE Conference on Computer Communications. Washington D.C., USA: IEEE Press, 2020: 1529-1538.
[3] [3] SHARMA A. Major BGP leak disrupts thousands of networks globally[EB/OL]. [2024-07-21]. https://www.bleepingcomputer.com/news/security/major-bgp-leak-disrupts-thousands-of-networks-globally/.
[4] [4] SIDDIQUI A. BGP route leak at angola cables slows connectivity for many Australians[EB/OL]. [2024-07-21]. https://manrs.org/2023/05/bgp-route-leak-at-angola-cables-slows-connectivity-for-many-australians/.
[5] [5] LEPINSKI M, KENT S, KONG D. A profile for Route Origin Authorizations (ROAs) (RFC 6482)[EB/OL]. [2024-07-21]. https://www.rfc-editor.org/rfc/pdfrfc/rfc6482.txt.pdf.
[6] [6] LEPINSKI M, KENT S. An infrastructure to support secure Internet routing (RFC 6480)[EB/OL]. [2024-07-21]. https://www.rfc-editor.org/rfc/pdfrfc/rfc6480.txt.pdf.
[7] [7] LEPINSKI M, SRIRAM K. BGPsec protocol specification (RFC 8025)[EB/OL]. [2024-07-21]. https://www.rfc-editor.org/rfc/pdfrfc/rfc8205.txt.pdf.
[8] [8] CRONE M. Analyzing adoptability of secure BGP routing proposals[EB/OL]. [2024-07-21]. https://maxcrone.org/assets/docs/2021-02-01-secure-bgp-adoption.pdf.
[9] [9] HARI A, LAKSHMAN T V. The Internet blockchain: a distributed, tamper-resistant transaction framework for the Internet[C]//Proceedings of the 15th ACM Workshop on Hot Topics in Networks. New York, USA: ACM Press, 2016: 204-210.
[10] [10] YUE J R, QIN Y J, GAO S, et al. A privacy-preserving route leak protection mechanism based on blockchain[C]//Proceedings of the IEEE International Conference on Information Communication and Software Engineering (ICICSE). Wahington D.C., USA: IEEE Press, 2021: 264-269.
[12] [12] HE G B, SU W, GAO S, et al. ROAchain: securing route origin authorization with blockchain for inter-domain routing[J]. IEEE Transactions on Network and Service Management, 2021, 18(2): 1690-1705.
[14] [14] LIU Y P, ZHANG S, ZHU H J, et al. A novel routing verification approach based on blockchain for inter-domain routing in smart metropolitan area networks[J]. Journal of Parallel and Distributed Computing, 2020, 142: 77-89.
[15] [15] CHEN D, BA Y, QIU H, et al. ISRchain: achieving efficient interdomain secure routing with blockchain[J]. Computers & Electrical Engineering, 2020, 83: 106584.
[18] [18] MASTILAK L, HELEBRANDT P, GALINSKI M, et al. Secure inter-domain routing based on blockchain: a comprehensive survey[J]. Sensors, 2022, 22(4): 1437.
[19] [19] LUCKIE M, HUFFAKER B, DHAMDHERE A, et al. AS relationships, customer cones, and validation[C]//Proceedings of the 2013 Conference on Internet Measurement Conference. New York, USA: ACM Press, 2013: 243-256.
[20] [20] GAO L X, REXFORD J. Stable Internet routing without global coordination[C]//Proceedings of the 2000 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems. Washington D.C., USA: IEEE Press, 2001: 681-692.
[21] [21] GIOTSAS V, ZHOU S. Valley-free violation in Internet routing—analysis based on BGP community data[C]//Proceedings of the IEEE International Conference on Communications (ICC). Washington D.C., USA: IEEE Press, 2012: 1193-1197.
[22] [22] HUSTON G. The ISP column/leaking routes[EB/OL]. [2024-07-21]. https://www.potaroo.net/ispcol/2025-05/leak.pdf.
[23] [23] GAO L. On inferring autonomous system relationships in the Internet[J]. IEEE/ACM Transactions on Networking, 2001, 9(6): 733-745.
[24] [24] SRIRAM K, MONTGOMERY D, MCPHERSON D, et al. Problem definition and classification of BGP route leaks (RFC 7908)[EB/OL]. [2024-07-21]. https://www.rfc-editor.org/rfc/pdfrfc/rfc7908.txt.pdf.
[25] [25] SRIRAM K, MONTGOMERY D, MCPHERSON D, et al. RFC 7908: problem definition and classification of BGP route leaks[EB/OL]. [2024-07-21]. https://www.rfc-editor.org/rfc/pdfrfc/rfc7908.txt.pdf.
[26] [26] KUERBIS B, MUELLER M. Internet routing registries, data governance, and security[J]. Journal of Cyber Policy, 2017, 2(1): 64-81.
[27] [27] GOODELL G, AIELLO W, GRIFFIN T, et al. Working around BGP: an incremental approach to improving security and accuracy of interdomain routing[EB/OL]. [2024-07-21]. https://www.cs.purdue.edu/truselab/readings/ndss03.pdf.
[28] [28] KENT S, LYNN C, SEO K. Secure Border Gateway Protocol (S-BGP)[J]. IEEE Journal on Selected Areas in Communications, 2002, 18(4): 582-592.
[29] [29] SRIRAM K, MONTGOMERY D. Methods for detection and mitigation of BGP route leaks[EB/OL]. [2024-07-21]. https://www.ietf.org/proceedings/92/slides/slides-92-idr-8.pdf.
[30] [30] REYNOLDS M, TURNER S, KENT S. A Profile for BGPsec router certificates, certificate revocation lists, and certification requests (RFC 8209)[EB/OL]. [2024-07-21]. https://www.rfc-editor.org/rfc/pdfrfc/rfc8209.txt.pdf.
[31] [31] WHITE R. Securing BGP through secure origin BGP (soBGP)[J]. Business Communications Review, 2003, 33(5): 47-53.
[32] [32] UMEDA N, KIMURA T, YANAI N. The juice is worth the squeeze: analysis of autonomous system provider authorization in partial deployment[J]. IEEE Open Journal of the Communications Society, 2023, 4: 269-306.
[33] [33] SIDDIQUI A. Unpacking the first route leak prevented by ASPA[EB/OL]. [2024-07-21]. https://manrs.org/2023/02/unpacking-the-first-route-leak-prevented-by-aspa/.
[34] [34] GALLO A. MANRS as fire code[EB/OL]. [2024-07-21]. https://manrs.org/2024/06/manrs-as-fire-code/.
[35] [35] HLAVACEK T, HERZBERG A, SHULMAN H, et al. Practical experience: methodologies for measuring route origin validation[C]//Proceedings of the 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). Washington D.C., USA: IEEE Press, 2018: 634-641.
[36] [36] DONNET B, BONAVENTURE O. On BGP communities[J]. ACM SIGCOMM Computer Communication Review, 2008, 38(2): 55-59.
[37] [37] SPADACCINO P, BRUZZESE S, CUOMO F, et al. Analysis and emulation of BGP hijacking events[C]//Proceedings of the 2023 IEEE/IFIP Network Operations and Management Symposium. Washington D.C., USA: IEEE Press, 2023: 1-4.
[38] [38] ZHANG C W, MIAO C C, AN C Q, et al. Metis: detecting fake AS-PATHs based on link prediction[C]//Proceedings of the IEEE Symposium on Computers and Communications (ISCC). Washington D.C., USA: IEEE Press, 2023: 656-662.
[39] [39] GOLDBERG S, SCHAPIRA M, HUMMON P, et al. How secure are secure interdomain routing protocols[J]. ACM SIGCOMM Computer Communication Review, 2010, 40(4): 87-98.
[41] [41] SAAD M, ANWAR A, AHMAD A, et al. RouteChain: towards blockchain-based secure and efficient BGP routing[J]. Computer Networks, 2022, 217: 109362.
[42] [42] YANG Q, MA L, TU S S, et al. Towards blockchain-based secure BGP routing, challenges and future research directions[J]. Computers, Materials & Continua, 2024, 79(2): 2035-2062.
[43] [43] ONGARO D, OUSTERHOUT J. The raft consensus algorithm[EB/OL]. [2024-07-21]. https://raft.github.io/slides/riconwest2013.pdf.
[44] [44] ZHAO M C, ZHOU W C, GURNEY A J T, et al. Private and verifiable interdomain routing decisions[J]. IEEE/ACM Transactions on Networking, 2015, 24(2): 1011-1024.
[45] [45] SAKHO S, ZHANG J B, ESSAF F, et al. Research on an improved practical Byzantine fault tolerance algorithm[C]//Proceedings of the 2nd International Conference on Advances in Computer Technology, Information Science and Communications (CTISC). Washington D.C., USA: IEEE Press, 2020: 176-181.
[46] [46] GALMES M F, AUMATELL R C, CABELLOS-APARICIO A, et al. Preventing route leaks using a decentralized approach[C]//Proceedings of 2020 IFIP Networking Conference. Washington D.C., USA: IEEE Press, 2020: 509-513.
[47] [47] GILAD Y, COHEN A, HERZBERG A. Are we there yet? On RPKI's deployment and security[EB/OL]. [2024-07-21]. https://eprint.iacr.org/2016/1010.pdf.
[48] [48] ZENG M, LI D D, ZHANG P, et al. Federated route leak detection in inter-domain routing with privacy guarantee[J]. ACM Transactions on Internet Technology, 2023, 23(1): 1-22.
[49] [49] The United States Federal Communications Commission. Safeguarding and securing the open Internet[EB/OL]. [2024-07-21]. https://docs.fcc.gov/public/attachments/DOC-401676A1.pdf.
[50] [50] MANRS. MANRS community meeting-15 May 2024[EB/OL]. [2024-07-21]. https://manrs.org/event/manrs-community-meeting-may-2024/.
[51] [51] MANIMURGAN S, ANITHA T, DIVYA G, et al. A survey on blockchain technology for network security applications[C]//Proceedings of the 2nd International Conference on Computing and Information Technology (ICCIT). Washington D.C., USA: IEEE Press, 2022: 440-445.
[53] [53] FRIESS J, MIRDITA D, SCHULMANN H, et al. Byzantine-secure relying party for resilient RPKI[EB/OL]. [2024-07-21]. https://arxiv.org/pdf/2405.00531.
[54] [54] SYTA E, TAMAS I, VISHER D, et al. Keeping authorities “honest or bust” with decentralized witness cosigning[C]//Proceedings of the IEEE Symposium on Security and Privacy (SP). Washington D.C., USA: IEEE Press, 2016: 526-545.
[55] [55] WILKIE A, SMITH S S. Blockchain: speed, efficiency, decreased costs, and technical challenges[M]. [S. l.]: Emerald Publishing Limited, 2021.
[56] [56] The BGP instability report[EB/OL]. [2024-07-21]. https://bgpupdates.potaroo.net/instability/bgpupd.html.
[57] [57] SINGH A, CLICK K, PARIZI R M, et al. Sidechain technologies in blockchain networks: an examination and state-of-the-art review[J]. Journal of Network and Computer Applications, 2020, 149: 102471.
[58] [58] PAPADIS N, TASSIULAS L. Blockchain-based payment channel networks: challenges and recent advances[J]. IEEE Access, 2020(8): 227596-227609.
[59] [59] CHOW S S M, LAI Z L, LIU C, et al. Sharding blockchain[C]//Proceedings of the IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). Washington D.C., USA: IEEE Press, 2018: 1665.
[61] [61] DELGADO-SEGURA S, PREZ-SOL C, HERRERA-JOANCOMART J, et al. Cryptocurrency networks: a new P2P paradigm[J]. Mobile Information Systems, 2018(1): 2159082.
[62] [62] DAI Q Y, ZHANG B, DONG S Q. Eclipse attack detection for blockchain network layer based on deep feature extraction[J]. Wireless Communications and Mobile Computing, 2022(1): 1451813.
[63] [63] SAAD M, COOK V, NGUYEN L, et al. Partitioning attacks on Bitcoin: colliding space, time, and logic[C]//Proceedings of the IEEE 39th International Conference on Distributed Computing Systems (ICDCS). Washington D.C., USA: IEEE Press, 2019: 1175-1187.
[64] [64] NAYAK K, KUMAR S, MILLER A, et al. Stubborn mining: generalizing selfish mining and combining with an eclipse attack[C]//Proceedings of the IEEE European Symposium on Security and Privacy (EuroS&P). Washington D.C., USA: IEEE Press, 2016: 305-320.
[65] [65] DEIRMENTZOGLOU E, PAPAKYRIAKOPOULOS G, PATSAKIS C. A survey on long-range attacks for proof of stake protocols[J]. IEEE Access, 2019, 7: 28712-28725.
[66] [66] LI W T, ANDREINA S, BOHLI J M, et al. Securing proof-of-stake blockchain protocols[M]. Berlin, Germany: Springer International Publishing, 2017.
[67] [67] PLATT M, MCBURNEY P. Sybil in the haystack: a comprehensive review of blockchain consensus mechanisms in search of strong sybil attack resistance[J]. Algorithms, 2023, 16(1): 34.
[68] [68] KHAN S N, LOUKIL F, GHEDIRA-GUEGAN C, et al. Blockchain smart contracts: applications, challenges, and future trends[J]. Peer-to-Peer Networking and Applications, 2021, 14(5): 2901-2925.
[69] [69] CHU H T, ZHANG P C, DONG H, et al. A survey on smart contract vulnerabilities: data sources, detection and repair[J]. Information and Software Technology, 2023, 159: 107221.
[70] [70] ALKHALIFAH A, NG A, WATTERS P A, et al. A mechanism to detect and prevent ethereum blockchain smart contract reentrancy attacks[J]. Frontiers in Computer Science, 2021, 3: 598780.
[71] [71] OU W, HUANG S Y, ZHENG J J, et al. An overview on cross-chain: mechanism, platforms, challenges and advances[J]. Computer Networks, 2022, 218: 109378.
Get Citation
Copy Citation Text
WANG Qun, LI Fujuan, MA Zhuo. Research on Application of Blockchain in BGP Route Leakage Prevention[J]. Computer Engineering, 2025, 51(8): 39
Category:
Received: Aug. 13, 2024
Accepted: Aug. 26, 2025
Published Online: Aug. 26, 2025
The Author Email: WANG Qun (wqun@jspi.edu.cn)