Chinese Journal of Lasers, Volume. 45, Issue 3, 307014(2018)

Comparison of Algorithms of High-Density Molecule Localization Based on Compressed Sensing

Zhang Saiwen1,2,3, Yu Bin1,2,3、*, Chen Danni1,2,3, Wu Jingjing1,2,3, Li Siwei1,2,3, and Qu Junle1,2,3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(26)

    [1] [1] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11): 780-782.

    [2] [2] Gustafsson M G. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of National Academy Sciences of the United States of America, 2005, 102(37): 13081-13086.

    [3] [3] Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) [J]. Nature Methods, 2006, 3(10): 793-796.

    [4] [4] Hess S T, Girirajan T P K, Mason M D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy[J]. Biophysical Journal, 2006, 91(11): 4258-4272.

    [5] [5] Thompson R E, Larson D R , Webb W W. Precise nanometer localization analysis for individual fluorescent probes[J]. Biophysical Journal, 2002, 82(5): 2775-2783.

    [6] [6] Aguet F, van de Ville D, Unser M. A maximum-likelihood formalism for sub-resolution axial localization of fluorescent nanoparticles[J]. Optics Express, 2005, 13(26): 10503-10522.

    [7] [7] Yu B, Chen D N, Liu L, et al. Fast Fourier-domain localization algorithm of single molecule with nanometer resolution for super-resolution fluorescence imaging[J]. Acta Optica Sinica, 2012, 32(2): 0218001.

    [8] [8] Yu B, Chen D N, Qu J L, et al. Fast Fourier domain localization algorithm of a single molecule with nanometer precision[J]. Optics Letters, 2011, 36(22): 4317-4319.

    [9] [9] Holden S J, Uphoff S,Kapanidis A N. DAOSTORM: an algorithm for high-density super-resolution microscopy[J]. Nature Methods, 2011, 8(4): 279-280.

    [10] [10] Quan T W, Zhu H Y, Liu X M, et al. High-density localization of active molecules using structured sparse model and bayesian information criterion[J]. Optics Express, 2011, 19(18): 16963-16974.

    [11] [11] Zhu L, Zhang W, Elnatan D, et al. Faster STORM using compressed sensing[J]. Nature Methods, 2012, 9(7): 721-723.

    [12] [12] Babcock H P, Moffitt J R, Cao Y L, et al. Fast compressed sensing analysis for super-resolution imaging using L1-homotopy[J]. Optics Express, 2013, 21(23): 28583-28596.

    [13] [13] Cheng T, Chen D N, Yu B, et al. Reconstruction of super-resolution STORM images using compressed sensing based on low-resolution raw images and interpolation[J]. Biomedical Optics Express, 2017, 8(5): 2445-2457.

    [14] [14] Zhang S W, Chen D N, Niu H B. 3D localization of high particle density images using sparse recovery[J]. Applied Optics, 2015, 54(26): 7859-7864.

    [15] [15] Du Y J, Zhang H,Zhao M Y, et al. Faster super-resolution imaging of high density molecules via a cascading algorithm based on compressed sensing[J]. Optics Express, 2015, 23(14): 18563-18576.

    [16] [16] Gu L S, Sheng Y, Chen Y, et al. High-density 3D single molecular analysis based on compressed sensing[J]. Biophysical Journal, 2014, 106(11): 2443-2449.

    [17] [17] Huang J Q, Gumpper K, Chi Y J, et al. Fast two-dimensional super-resolution image reconstruction algorithm for ultra-high emitter density[J]. Optics Letters, 2015, 40(13): 2989-2992.

    [18] [18] Daubechies I, Fornasier M, Loris I. Accelerated projected gradient method for linear inverse problems with sparsity constraints[J]. Journal of Fourier Analysis and Applications, 2008, 14(5/6): 764-792.

    [19] [19] Figueiredo M A, Nowak R D, Wright S J. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-597.

    [20] [20] Parikh N, Boyd S. Proximal algorithms[M]. Boston: Now Publishers, 2014, 1(3): 127-239.

    [21] [21] Boyd S, Parikh N, Chu E, et al. Distributed Optimization and Statistical Learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine Learning, 2010, 3(1): 1-122.

    [22] [22] Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202.

    [23] [23] Donoho D L, Tsaig Y. Fast solution of L1-norm minimization problems when the solution may be sparse[J]. IEEE Transactions on Information Theory, 2008, 54(11): 4789-4812.

    [24] [24] Cai T T, Wang L. Orthogonal matching pursuit for sparse signal recovery with noise[J]. IEEE Transactions on Information Theory, 2011, 57(7): 4680-4688.

    [25] [25] Hugelier S, de Rooi J J, Bernex R, et al. Sparse deconvolution of high-density super-resolution images[J]. Scientific Reports, 2016, 6: 21413.

    [26] [26] http://bigwww.epfl.ch/smlm/.

    Tools

    Get Citation

    Copy Citation Text

    Zhang Saiwen, Yu Bin, Chen Danni, Wu Jingjing, Li Siwei, Qu Junle. Comparison of Algorithms of High-Density Molecule Localization Based on Compressed Sensing[J]. Chinese Journal of Lasers, 2018, 45(3): 307014

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Aug. 7, 2017

    Accepted: --

    Published Online: Mar. 6, 2018

    The Author Email: Bin Yu (yubin@szu.edu.cn)

    DOI:10.3788/cjl201845.0307014

    Topics