Chinese Journal of Lasers, Volume. 45, Issue 3, 307014(2018)
Comparison of Algorithms of High-Density Molecule Localization Based on Compressed Sensing
[1] [1] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11): 780-782.
[2] [2] Gustafsson M G. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of National Academy Sciences of the United States of America, 2005, 102(37): 13081-13086.
[3] [3] Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) [J]. Nature Methods, 2006, 3(10): 793-796.
[4] [4] Hess S T, Girirajan T P K, Mason M D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy[J]. Biophysical Journal, 2006, 91(11): 4258-4272.
[5] [5] Thompson R E, Larson D R , Webb W W. Precise nanometer localization analysis for individual fluorescent probes[J]. Biophysical Journal, 2002, 82(5): 2775-2783.
[6] [6] Aguet F, van de Ville D, Unser M. A maximum-likelihood formalism for sub-resolution axial localization of fluorescent nanoparticles[J]. Optics Express, 2005, 13(26): 10503-10522.
[7] [7] Yu B, Chen D N, Liu L, et al. Fast Fourier-domain localization algorithm of single molecule with nanometer resolution for super-resolution fluorescence imaging[J]. Acta Optica Sinica, 2012, 32(2): 0218001.
[8] [8] Yu B, Chen D N, Qu J L, et al. Fast Fourier domain localization algorithm of a single molecule with nanometer precision[J]. Optics Letters, 2011, 36(22): 4317-4319.
[9] [9] Holden S J, Uphoff S,Kapanidis A N. DAOSTORM: an algorithm for high-density super-resolution microscopy[J]. Nature Methods, 2011, 8(4): 279-280.
[10] [10] Quan T W, Zhu H Y, Liu X M, et al. High-density localization of active molecules using structured sparse model and bayesian information criterion[J]. Optics Express, 2011, 19(18): 16963-16974.
[11] [11] Zhu L, Zhang W, Elnatan D, et al. Faster STORM using compressed sensing[J]. Nature Methods, 2012, 9(7): 721-723.
[12] [12] Babcock H P, Moffitt J R, Cao Y L, et al. Fast compressed sensing analysis for super-resolution imaging using L1-homotopy[J]. Optics Express, 2013, 21(23): 28583-28596.
[13] [13] Cheng T, Chen D N, Yu B, et al. Reconstruction of super-resolution STORM images using compressed sensing based on low-resolution raw images and interpolation[J]. Biomedical Optics Express, 2017, 8(5): 2445-2457.
[14] [14] Zhang S W, Chen D N, Niu H B. 3D localization of high particle density images using sparse recovery[J]. Applied Optics, 2015, 54(26): 7859-7864.
[15] [15] Du Y J, Zhang H,Zhao M Y, et al. Faster super-resolution imaging of high density molecules via a cascading algorithm based on compressed sensing[J]. Optics Express, 2015, 23(14): 18563-18576.
[16] [16] Gu L S, Sheng Y, Chen Y, et al. High-density 3D single molecular analysis based on compressed sensing[J]. Biophysical Journal, 2014, 106(11): 2443-2449.
[17] [17] Huang J Q, Gumpper K, Chi Y J, et al. Fast two-dimensional super-resolution image reconstruction algorithm for ultra-high emitter density[J]. Optics Letters, 2015, 40(13): 2989-2992.
[18] [18] Daubechies I, Fornasier M, Loris I. Accelerated projected gradient method for linear inverse problems with sparsity constraints[J]. Journal of Fourier Analysis and Applications, 2008, 14(5/6): 764-792.
[19] [19] Figueiredo M A, Nowak R D, Wright S J. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-597.
[20] [20] Parikh N, Boyd S. Proximal algorithms[M]. Boston: Now Publishers, 2014, 1(3): 127-239.
[21] [21] Boyd S, Parikh N, Chu E, et al. Distributed Optimization and Statistical Learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine Learning, 2010, 3(1): 1-122.
[22] [22] Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202.
[23] [23] Donoho D L, Tsaig Y. Fast solution of L1-norm minimization problems when the solution may be sparse[J]. IEEE Transactions on Information Theory, 2008, 54(11): 4789-4812.
[24] [24] Cai T T, Wang L. Orthogonal matching pursuit for sparse signal recovery with noise[J]. IEEE Transactions on Information Theory, 2011, 57(7): 4680-4688.
[25] [25] Hugelier S, de Rooi J J, Bernex R, et al. Sparse deconvolution of high-density super-resolution images[J]. Scientific Reports, 2016, 6: 21413.
[26] [26] http://bigwww.epfl.ch/smlm/.
Get Citation
Copy Citation Text
Zhang Saiwen, Yu Bin, Chen Danni, Wu Jingjing, Li Siwei, Qu Junle. Comparison of Algorithms of High-Density Molecule Localization Based on Compressed Sensing[J]. Chinese Journal of Lasers, 2018, 45(3): 307014
Special Issue:
Received: Aug. 7, 2017
Accepted: --
Published Online: Mar. 6, 2018
The Author Email: Bin Yu (yubin@szu.edu.cn)