Chinese Journal of Lasers, Volume. 49, Issue 10, 1002505(2022)

Liquid Metal Based Flexible Electronics Fabricated by Laser and its Applications

Haoyu Li1,2,3, Chengjun Zhang2,4, Qing Yang2,4, Xun Hou1,2,3, and Feng Chen1,2,3、*
Author Affiliations
  • 1School of Electronic Science and Engineering, Department of Electronics and Informatics, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
  • 2State Key Laboratory for Manufacturing System Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
  • 3Shaanxi Key Laboratory of Photonics Technology for Information, Xi’an 710049, Shaanxi, China
  • 4School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
  • show less
    References(108)

    [1] Yang J C, Mun J, Kwon S Y et al. Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics[J]. Advanced Materials, 31, e1904765(2019).

    [2] Chen X D, Rogers J A, Lacour S P et al. Materials chemistry in flexible electronics[J]. Chemical Society Reviews, 48, 1431-1433(2019).

    [3] Niu Y, Liu H, He R Y et al. The new generation of soft and wearable electronics for health monitoring in varying environment: from normal to extreme conditions[J]. Materials Today, 41, 219-242(2020).

    [4] Gao Y J, Yu L T, Yeo J C et al. Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability[J]. Advanced Materials, 32, e1902133(2020).

    [5] Rodgers M M, Pai V M, Conroy R S. Recent advances in wearable sensors for health monitoring[J]. IEEE Sensors Journal, 15, 3119-3126(2014).

    [6] Morin S A, Shepherd R F, Kwok S W et al. Camouflage and display for soft machines[J]. Science, 337, 828-832(2012).

    [7] Shepherd R F, Ilievski F, Choi W et al. Multigait soft robot[J]. Proceedings of the National Academy of Sciences of the United States of America, 108, 20400-20403(2011).

    [8] Makushko P, Oliveros Mata E S, Cañón Bermúdez G S et al. Flexible magnetoreceptor with tunable intrinsic logic for on-skin touchless human-machine interfaces[J]. Advanced Functional Materials, 31, 2101089(2021).

    [9] Lu L J, Jiang C P, Hu G S et al. Flexible noncontact sensing for human-machine interaction[J]. Advanced Materials, 33, e2100218(2021).

    [10] Wu W Z P, Zou H, Ning N Y et al. Research progress of flexible electrode materials at home and abroad[J]. Journal of Functional Materials, 52, 2039-2049(2021).

    [11] Martinez R V, Branch J L, Fish C R et al. Robotic tentacles with three-dimensional mobility based on flexible elastomers[J]. Advanced Materials, 25, 205-212(2013).

    [12] Wang Y X, Yu Z, Mao G Y et al. Printable liquid-Metal@PDMS stretchable heater with high stretchability and dynamic stability for wearable thermotherapy[J]. Advanced Materials Technologies, 4, 1800435(2019).

    [13] Sun J Y, Keplinger C, Whitesides G M et al. Ionic skin[J]. Advanced Materials, 26, 7608-7614(2014).

    [14] Lacour S P, Jones J, Wagner S et al. Stretchable interconnects for elastic electronic surfaces[J]. Proceedings of the IEEE, 93, 1459-1467(2005).

    [15] Xu S, Zhang Y H, Cho J et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems[J]. Nature Communications, 4, 1543(2013).

    [16] Yun S, Niu X F, Yu Z B et al. Compliant silver nanowire-polymer composite electrodes for bistable large strain actuation[J]. Advanced Materials, 24, 1321-1327(2012).

    [17] Lipomi D J, Vosgueritchian M, Tee B C K et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes[J]. Nature Nanotechnology, 6, 788-792(2011).

    [18] Chen B H, Lu J J, Yang C H et al. Highly stretchable and transparent ionogels as nonvolatile conductors for dielectric elastomer transducers[J]. ACS Applied Materials & Interfaces, 6, 7840-7845(2014).

    [19] Mineart K P, Lin Y L, Desai S C et al. Ultrastretchable, cyclable and recyclable 1- and 2-dimensional conductors based on physically cross-linked thermoplastic elastomer gels[J]. Soft Matter, 9, 7695-7700(2013).

    [20] Bartlett M D, Fassler A, Kazem N et al. Stretchable, high-k dielectric elastomers through liquid-metal inclusions[J]. Advanced Materials, 28, 3726-3731(2016).

    [21] Kang J H, Son D H, Wang G J N et al. Tough and water-insensitive self-healing elastomer for robust electronic skin[J]. Advanced Materials, 30, e1706846(2018).

    [22] Cochran C N, Foster L M. Vapor pressure of gallium, stability of gallium suboxide vapor, and equilibria of some reactions producing gallium suboxide vapor[J]. Journal of the Electrochemical Society, 109, 144(1962).

    [23] Kim J H, Kim S, So J H et al. Cytotoxicity of gallium-indium liquid metal in an aqueous environment[J]. ACS Applied Materials & Interfaces, 10, 17448-17454(2018).

    [24] Liu J. Rise of the liquid metal science, technology and industry: advancements and opportunities[J]. Strategic Study of CAE, 22, 93-103(2020).

    [25] Wang L, Liu J. Pressured liquid metal screen printing for rapid manufacture of high resolution electronic patterns[J]. RSC Advances, 5, 57686-57691(2015).

    [26] Zhang Q, Gao Y X, Liu J. Atomized spraying of liquid metal droplets on desired substrate surfaces as a generalized way for ubiquitous printed electronics[J]. Applied Physics A, 116, 1091-1097(2014).

    [27] Guo C R, Yu Y, Liu J. Rapidly patterning conductive components on skin substrates as physiological testing devices via liquid metal spraying and pre-designed mask[J]. Journal of Materials Chemistry B, 2, 5739-5745(2014).

    [28] Sun T L, Feng L, Gao X F et al. Bioinspired surfaces with special wettability[J]. Accounts of Chemical Research, 38, 644-652(2005).

    [29] Fang Y, Yong J L, Huo J L et al. Bioinspired slippery surface fabricated by femtosecond laser and its applications[J]. Laser & Optoelectronics Progress, 57, 111413(2020).

    [30] Yong J L, Chen F, Fang Y et al. Bioinspired design of underwater superaerophobic and superaerophilic surfaces by femtosecond laser ablation for anti- or capturing bubbles[J]. ACS Applied Materials & Interfaces, 9, 39863-39871(2017).

    [31] Zhang C J, Yang Q, Yong J L et al. Guiding magnetic liquid metal for flexible circuit[J]. International Journal of Extreme Manufacturing, 3, 025102(2021).

    [32] Wu H, Zhang L R, Jiang S J et al. Ultrathin and high-stress-resolution liquid-metal-based pressure sensors with simple device structures[J]. ACS Applied Materials & Interfaces, 12, 55390-55398(2020).

    [33] Zhang S, Wang B, Jiang J J et al. High-fidelity conformal printing of 3D liquid alloy circuits for soft electronics[J]. ACS Applied Materials & Interfaces, 11, 7148-7156(2019).

    [34] Doudrick K, Liu S L Z, Mutunga E M et al. Different shades of oxide: from nanoscale wetting mechanisms to contact printing of gallium-based liquid metals[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 30, 6867-6877(2014).

    [35] Liu T Y, Sen P, Kim C J. Characterization of nontoxic liquid-metal alloy Galinstan for applications in microdevices[J]. Journal of Microelectrome-chanical Systems, 21, 443-450(2012).

    [36] Zavabeti A, Ou J Z, Carey B J et al. A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides[J]. Science, 358, 332-335(2017).

    [37] Ladd C, So J H, Muth J et al. 3D printing of free standing liquid metal microstructures[J]. Advanced Materials, 25, 5081-5085(2013).

    [38] Park Y G, An H S, Kim J Y et al. High-resolution, reconfigurable printing of liquid metals with three-dimensional structures[J]. Science Advances, 5, eaaw2844(2019).

    [39] Chen S, Deng Z S, Liu J. High performance liquid metal thermal interface materials[J]. Nanotechnology, 32, 092001(2021).

    [40] Ma B, Xu C T, Cui L S et al. Magnetic printing of liquid metal for perceptive soft actuators with embodied intelligence[J]. ACS Applied Materials & Interfaces, 13, 5574-5582(2021).

    [41] Wu J, Tang S Y, Fang T et al. A wheeled robot driven by a liquid-metal droplet[J]. Advanced Materials, 30, e1805039(2018).

    [42] Ye J, Chen J Y, Liu J. A liquid metal robot driven by hybrid-fluid[J]. Scientia Sinica (Technologica), 49, 619-626(2019).

    [43] Wang H Z, Chen S, Yuan B et al. Liquid metal transformable machines[J]. Accounts of Materials Research, 2, 1227-1238(2021).

    [44] Zhang J, Yao Y Y, Sheng L et al. Self-fueled biomimetic liquid metal mollusk[J]. Advanced Materials, 27, 2648-2655(2015).

    [45] Wang Q, Yu Y, Yang J et al. Fast fabrication of flexible functional circuits based on liquid metal dual-trans printing[J]. Advanced Materials, 27, 7109-7116(2015).

    [46] Chen S, Wang H Z, Zhao R Q et al. Liquid metal composites[J]. Matter, 2, 1446-1480(2020).

    [47] Zhang J Z, Zhang K Y, Yong J L et al. Femtosecond laser preparing patternable liquid-metal-repellent surface for flexible electronics[J]. Journal of Colloid and Interface Science, 578, 146-154(2020).

    [48] Xu K C, Fujita Y, Lu Y Y et al. A wearable body condition sensor system with wireless feedback alarm functions[J]. Advanced Materials, 33, e2008701(2021).

    [49] Tang L X, Shang J, Jiang X Y. Multilayered electronic transfer tattoo that can enable the crease amplification effect[J]. Science Advances, 7, eabe3778(2021).

    [50] Spells K E. The determination of the viscosity of liquid gallium over an extended nrange of temperature[J]. Proceedings of the Physical Society, 48, 299-311(1936).

    [51] Zhang J, Sheng L, Liu J. Synthetically chemical-electrical mechanism for controlling large scale reversible deformation of liquid metal objects[J]. Scientific Reports, 4, 7116(2014).

    [52] Larsen R J, Dickey M D, Whitesides G M et al. Viscoelastic properties of oxide-coated liquid metals[J]. Journal of Rheology, 53, 1305-1326(2009).

    [53] Kim D, Thissen P, Viner G et al. Recovery of nonwetting characteristics by surface modification of gallium-based liquid metal droplets using hydrochloric acid vapor[J]. ACS Applied Materials & Interfaces, 5, 179-185(2013).

    [54] Davis E, Ndao S. On the wetting states of low melting point metal Galinstan® on silicon microstructured surfaces[J]. Advanced Engineering Materials, 20, 1700829(2018).

    [55] Kadlaskar S S, Yoo J H, Abhijeet et al. Cost-effective surface modification for Galinstan® lyophobicity[J]. Journal of Colloid and Interface Science, 492, 33-40(2017).

    [56] Wang L, He Z Z, Ding Y J et al. The rebound motion of liquid metal droplet on flexible micro/nano needle forest[J]. Advanced Materials Interfaces, 3, 1600008(2016).

    [57] Young T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 95, 65-87(1805).

    [58] Law K Y. Definitions for hydrophilicity, hydrophobicity, and superhydrophobicity: getting the basics right[J]. The Journal of Physical Chemistry Letters, 5, 686-688(2014).

    [59] Li H Y, Mu P, Li J et al. Inverse desert beetle-like ZIF-8/PAN composite nanofibrous membrane for highly efficient separation of oil-in-water emulsions[J]. Journal of Materials Chemistry A, 9, 4167-4175(2021).

    [60] Zhang P C, Wang S S, Wang S T et al. Superwetting surfaces under different media: effects of surface topography on wettability[J]. Small, 11, 1939-1946(2015).

    [61] Lam C N C, Wu R, Li D et al. Study of the advancing and receding contact angles: liquid sorption as a cause of contact angle hysteresis[J]. Advances in Colloid and Interface Science, 96, 169-191(2002).

    [62] McHale G, Shirtcliffe N J, Newton M I. Contact-angle hysteresis on super-hydrophobic surfaces[J]. Langmuir, 20, 10146-10149(2004).

    [63] Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 28, 988-994(1936).

    [64] Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 40, 546-551(1944).

    [65] Liu X J, Ye Q, Song X W et al. Responsive wetting transition on superhydrophobic surfaces with sparsely grafted polymer brushes[J]. Soft Matter, 7, 515-523(2011).

    [66] Chen P P, Chen L, Han D et al. Wetting behavior at micro-/ nanoscales: direct imaging of a microscopic water/air/solid three-phase interface[J]. Small, 5, 908-912(2009).

    [67] Chen Z Y, Lee J B. Surface modification with gallium coating as nonwetting surfaces for gallium-based liquid metal droplet manipulation[J]. ACS Applied Materials & Interfaces, 11, 35488-35495(2019).

    [68] Handschuh-Wang S, Wang T, Zhu L F et al. Corrosion-resistant functional diamond coatings for reliable interfacing of liquid metals with solid metals[J]. ACS Applied Materials & Interfaces, 12, 40891-40900(2020).

    [69] Zhang J Z, Yong J L, Zhang C J et al. Liquid metal-based reconfigurable and repairable electronics designed by a femtosecond laser[J]. ACS Applied Electronic Materials, 2, 2685-2691(2020).

    [70] Zhao R Q, Guo R, Xu X L et al. A fast and cost-effective transfer printing of liquid metal inks for three-dimensional wiring in flexible electronics[J]. ACS Applied Materials & Interfaces, 12, 36723-36730(2020).

    [71] Yoon Y, Kim D, Lee J B. Hierarchical micro/nano structures for super-hydrophobic surfaces and super-lyophobic surface against liquid metal[J]. Micro and Nano Systems Letters, 2, 3(2014).

    [72] Zhang D S, Sugioka K. Hierarchical microstructures with high spatial frequency laser induced periodic surface structures possessing different orientations created by femtosecond laser ablation of silicon in liquids[J]. Opto-Electronic Advances, 2, 19000201-19000218(2019).

    [73] Kim M G, Brown D K, Brand O. Nanofabrication for all-soft and high-density electronic devices based on liquid metal[J]. Nature Communications, 11, 1002(2020).

    [74] Matsuhisa N, Chen X D, Bao Z N et al. Materials and structural designs of stretchable conductors[J]. Chemical Society Reviews, 48, 2946-2966(2019).

    [75] Dickey M D. Stretchable and soft electronics using liquid metals[J]. Advanced Materials, 29, 1606425(2017).

    [76] Leber A, Dong C Q, Chandran R et al. Soft and stretchable liquid metal transmission lines as distributed probes of multimodal deformations[J]. Nature Electronics, 3, 316-326(2020).

    [77] Lee J, Ihle S J, Pellegrino G S et al. Stretchable and suturable fibre sensors for wireless monitoring of connective tissue strain[J]. Nature Electronics, 4, 291-301(2021).

    [78] Cui Z Q, Wang W S, Guo L L et al. Haptically quantifying Young's modulus of soft materials using a self-locked stretchable strain sensor[J]. Advanced Materials, 2104078(2021).

    [79] Bai X, Yang Q, Fang Y et al. Superhydrophobicity-memory surfaces prepared by a femtosecond laser[J]. Chemical Engineering Journal, 383, 123143(2020).

    [80] Wu D, Wang J N, Wu S Z et al. Three-level biomimetic rice-leaf surfaces with controllable anisotropic sliding[J]. Advanced Functional Materials, 21, 2927-2932(2011).

    [81] Luo X, Liu W J, Zhang H J et al. Ultrafast laser fabricating of controllable micro-nano dual-scale metallic surface structures and their functionalization[J]. Chinese Journal of Lasers, 48, 1502002(2021).

    [82] Wang Q H, Wang H X, Wang Z D et al. Highly efficient nanosecond laser-based multifunctional surface fabrication and corrosion resistance performance[J]. Chinese Journal of Lasers, 48, 1402018(2021).

    [83] Zhang D S, Chen F, Fang G P et al. Wetting characteristics on hierarchical structures patterned by a femtosecond laser[J]. Journal of Micromechanics and Microengineering, 20, 075029(2010).

    [84] Yong J L, Yang Q, Guo C L et al. A review of femtosecond laser-structured superhydrophobic or underwater superoleophobic porous surfaces/materials for efficient oil/water separation[J]. RSC Advances, 9, 12470-12495(2019).

    [85] Pan A, Gao B, Chen T et al. Fabrication of concave spherical microlenses on silicon by femtosecond laser irradiation and mixed acid etching[J]. Optics Express, 22, 15245-15250(2014).

    [86] Yong J L, Chen F, Huo J L et al. Green, biodegradable, underwater superoleophobic wood sheet for efficient oil/water separation[J]. ACS Omega, 3, 1395-1402(2018).

    [87] Yong J L, Chen F, Yang Q et al. Controllable adhesive superhydrophobic surfaces based on PDMS microwell arrays[J]. Langmuir, 29, 3274-3279(2013).

    [88] Yong J L, Chen F, Yang Q et al. Femtosecond laser controlled wettability of solid surfaces[J]. Soft Matter, 11, 8897-8906(2015).

    [89] Yong J L, Yang Q, Chen F et al. A simple way to achieve superhydrophobicity, controllable water adhesion, anisotropic sliding, and anisotropic wetting based on femtosecond-laser-induced line-patterned surfaces[J]. Journal of Materials Chemistry A, 2, 5499-5507(2014).

    [90] Jiang Y B, Su S K, Peng H R et al. Selective wetting/dewetting for controllable patterning of liquid metal electrodes for all-printed device application[J]. Journal of Materials Chemistry C, 5, 12378-12383(2017).

    [91] Shan C, Zhang C J, Liang J et al. Femtosecond laser hybrid fabrication of a 3D microfluidic chip for PCR application[J]. Optics Express, 28, 25716-25722(2020).

    [92] Jia Y C, Wang S X, Chen F. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrication and application[J]. Opto-Electronic Advances, 3, 190042(2020).

    [93] Yong J L, Zhang C J, Bai X et al. Designing “supermetalphobic” surfaces that greatly repel liquid metal by femtosecond laser processing: does the surface chemistry or microstructure play a crucial role?[J]. Advanced Materials Interfaces, 7, 1901931(2020).

    [94] Zhang C J, Yang Q, Shan C et al. Tuning a surface super-repellent to liquid metal by a femtosecond laser[J]. RSC Advances, 10, 3301-3306(2020).

    [95] Lu T, Markvicka E J, Jin Y C et al. Soft-matter printed circuit board with UV laser micropatterning[J]. ACS Applied Materials & Interfaces, 9, 22055-22062(2017).

    [96] Jiang Q, Zhang S, Jiang J J et al. Pneumatic enabled vertical interconnect access of liquid alloy circuits toward highly integrated stretchable electronics[J]. Advanced Materials Technologies, 6, 2000966(2021).

    [97] Wang M, Luo Y F, Wang T et al. Artificial skin perception[J]. Advanced Materials, 33, e2003014(2021).

    [98] Chen Y, Zhang Y C, Liang Z W et al. Flexible inorganic bioelectronics[J]. Npj Flexible Electronics, 4, 2(2020).

    [99] Liu Y, Wang H, Zhao W et al. Flexible, stretchable sensors for wearable health monitoring: sensing mechanisms, materials, fabrication strategies and features[J]. Sensors, 18, 645(2018).

    [100] Yang J, Cheng W L, Kalantar-Zadeh K. Electronic skins based on liquid metals[J]. Proceedings of the IEEE, 107, 2168-2184(2019).

    [101] Gao Y, Ota H, Schaler E W et al. Wearable microfluidic diaphragm pressure sensor for health and tactile touch monitoring[J]. Advanced Materials, 29, e1701985(2017).

    [102] Ma Z J, Huang Q Y, Xu Q et al. Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics[J]. Nature Materials, 20, 859-868(2021).

    [103] Chu B, Burnett W, Chung J W et al. Bring on the body NET[J]. Nature, 549, 328-330(2017).

    [104] Pyo S, Lee J, Bae K et al. Recent progress in flexible tactile sensors for human-interactive systems: from sensors to advanced applications[J]. Advanced Materials, 33, e2005902(2021).

    [105] Shintake J, Cacucciolo V, Floreano D et al. Soft robotic grippers[J]. Advanced Materials, e1707035(2018).

    [106] Liu H C, Yang M K, Yuan X et al. Liquid metal based flexible sensors for soft manipulator towards human-machine interaction[J]. China Mechanical Engineering, 32, 1470-1478(2021).

    [107] Li G R, Chen X P, Zhou F H et al. Self-powered soft robot in the Mariana Trench[J]. Nature, 591, 66-71(2021).

    [108] Cao L X, Yu D H, Xia Z S et al. Ferromagnetic liquid metal putty-like material with transformed shape and reconfigurable polarity[J]. Advanced Materials, 32, e2000827(2020).

    Tools

    Get Citation

    Copy Citation Text

    Haoyu Li, Chengjun Zhang, Qing Yang, Xun Hou, Feng Chen. Liquid Metal Based Flexible Electronics Fabricated by Laser and its Applications[J]. Chinese Journal of Lasers, 2022, 49(10): 1002505

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Nov. 30, 2021

    Accepted: Jan. 24, 2022

    Published Online: May. 9, 2022

    The Author Email: Chen Feng (chengfeng@mail.xjtu.edu.cn)

    DOI:10.3788/CJL202249.1002505

    Topics