Chinese Journal of Lasers, Volume. 49, Issue 10, 1002505(2022)
Liquid Metal Based Flexible Electronics Fabricated by Laser and its Applications
[1] Yang J C, Mun J, Kwon S Y et al. Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics[J]. Advanced Materials, 31, e1904765(2019).
[2] Chen X D, Rogers J A, Lacour S P et al. Materials chemistry in flexible electronics[J]. Chemical Society Reviews, 48, 1431-1433(2019).
[3] Niu Y, Liu H, He R Y et al. The new generation of soft and wearable electronics for health monitoring in varying environment: from normal to extreme conditions[J]. Materials Today, 41, 219-242(2020).
[4] Gao Y J, Yu L T, Yeo J C et al. Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability[J]. Advanced Materials, 32, e1902133(2020).
[5] Rodgers M M, Pai V M, Conroy R S. Recent advances in wearable sensors for health monitoring[J]. IEEE Sensors Journal, 15, 3119-3126(2014).
[6] Morin S A, Shepherd R F, Kwok S W et al. Camouflage and display for soft machines[J]. Science, 337, 828-832(2012).
[7] Shepherd R F, Ilievski F, Choi W et al. Multigait soft robot[J]. Proceedings of the National Academy of Sciences of the United States of America, 108, 20400-20403(2011).
[8] Makushko P, Oliveros Mata E S, Cañón Bermúdez G S et al. Flexible magnetoreceptor with tunable intrinsic logic for on-skin touchless human-machine interfaces[J]. Advanced Functional Materials, 31, 2101089(2021).
[9] Lu L J, Jiang C P, Hu G S et al. Flexible noncontact sensing for human-machine interaction[J]. Advanced Materials, 33, e2100218(2021).
[10] Wu W Z P, Zou H, Ning N Y et al. Research progress of flexible electrode materials at home and abroad[J]. Journal of Functional Materials, 52, 2039-2049(2021).
[11] Martinez R V, Branch J L, Fish C R et al. Robotic tentacles with three-dimensional mobility based on flexible elastomers[J]. Advanced Materials, 25, 205-212(2013).
[12] Wang Y X, Yu Z, Mao G Y et al. Printable liquid-Metal@PDMS stretchable heater with high stretchability and dynamic stability for wearable thermotherapy[J]. Advanced Materials Technologies, 4, 1800435(2019).
[13] Sun J Y, Keplinger C, Whitesides G M et al. Ionic skin[J]. Advanced Materials, 26, 7608-7614(2014).
[14] Lacour S P, Jones J, Wagner S et al. Stretchable interconnects for elastic electronic surfaces[J]. Proceedings of the IEEE, 93, 1459-1467(2005).
[15] Xu S, Zhang Y H, Cho J et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems[J]. Nature Communications, 4, 1543(2013).
[16] Yun S, Niu X F, Yu Z B et al. Compliant silver nanowire-polymer composite electrodes for bistable large strain actuation[J]. Advanced Materials, 24, 1321-1327(2012).
[17] Lipomi D J, Vosgueritchian M, Tee B C K et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes[J]. Nature Nanotechnology, 6, 788-792(2011).
[18] Chen B H, Lu J J, Yang C H et al. Highly stretchable and transparent ionogels as nonvolatile conductors for dielectric elastomer transducers[J]. ACS Applied Materials & Interfaces, 6, 7840-7845(2014).
[19] Mineart K P, Lin Y L, Desai S C et al. Ultrastretchable, cyclable and recyclable 1- and 2-dimensional conductors based on physically cross-linked thermoplastic elastomer gels[J]. Soft Matter, 9, 7695-7700(2013).
[20] Bartlett M D, Fassler A, Kazem N et al. Stretchable, high-k dielectric elastomers through liquid-metal inclusions[J]. Advanced Materials, 28, 3726-3731(2016).
[21] Kang J H, Son D H, Wang G J N et al. Tough and water-insensitive self-healing elastomer for robust electronic skin[J]. Advanced Materials, 30, e1706846(2018).
[22] Cochran C N, Foster L M. Vapor pressure of gallium, stability of gallium suboxide vapor, and equilibria of some reactions producing gallium suboxide vapor[J]. Journal of the Electrochemical Society, 109, 144(1962).
[23] Kim J H, Kim S, So J H et al. Cytotoxicity of gallium-indium liquid metal in an aqueous environment[J]. ACS Applied Materials & Interfaces, 10, 17448-17454(2018).
[24] Liu J. Rise of the liquid metal science, technology and industry: advancements and opportunities[J]. Strategic Study of CAE, 22, 93-103(2020).
[25] Wang L, Liu J. Pressured liquid metal screen printing for rapid manufacture of high resolution electronic patterns[J]. RSC Advances, 5, 57686-57691(2015).
[26] Zhang Q, Gao Y X, Liu J. Atomized spraying of liquid metal droplets on desired substrate surfaces as a generalized way for ubiquitous printed electronics[J]. Applied Physics A, 116, 1091-1097(2014).
[27] Guo C R, Yu Y, Liu J. Rapidly patterning conductive components on skin substrates as physiological testing devices via liquid metal spraying and pre-designed mask[J]. Journal of Materials Chemistry B, 2, 5739-5745(2014).
[28] Sun T L, Feng L, Gao X F et al. Bioinspired surfaces with special wettability[J]. Accounts of Chemical Research, 38, 644-652(2005).
[29] Fang Y, Yong J L, Huo J L et al. Bioinspired slippery surface fabricated by femtosecond laser and its applications[J]. Laser & Optoelectronics Progress, 57, 111413(2020).
[30] Yong J L, Chen F, Fang Y et al. Bioinspired design of underwater superaerophobic and superaerophilic surfaces by femtosecond laser ablation for anti- or capturing bubbles[J]. ACS Applied Materials & Interfaces, 9, 39863-39871(2017).
[31] Zhang C J, Yang Q, Yong J L et al. Guiding magnetic liquid metal for flexible circuit[J]. International Journal of Extreme Manufacturing, 3, 025102(2021).
[32] Wu H, Zhang L R, Jiang S J et al. Ultrathin and high-stress-resolution liquid-metal-based pressure sensors with simple device structures[J]. ACS Applied Materials & Interfaces, 12, 55390-55398(2020).
[33] Zhang S, Wang B, Jiang J J et al. High-fidelity conformal printing of 3D liquid alloy circuits for soft electronics[J]. ACS Applied Materials & Interfaces, 11, 7148-7156(2019).
[34] Doudrick K, Liu S L Z, Mutunga E M et al. Different shades of oxide: from nanoscale wetting mechanisms to contact printing of gallium-based liquid metals[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 30, 6867-6877(2014).
[35] Liu T Y, Sen P, Kim C J. Characterization of nontoxic liquid-metal alloy Galinstan for applications in microdevices[J]. Journal of Microelectrome-chanical Systems, 21, 443-450(2012).
[36] Zavabeti A, Ou J Z, Carey B J et al. A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides[J]. Science, 358, 332-335(2017).
[37] Ladd C, So J H, Muth J et al. 3D printing of free standing liquid metal microstructures[J]. Advanced Materials, 25, 5081-5085(2013).
[38] Park Y G, An H S, Kim J Y et al. High-resolution, reconfigurable printing of liquid metals with three-dimensional structures[J]. Science Advances, 5, eaaw2844(2019).
[39] Chen S, Deng Z S, Liu J. High performance liquid metal thermal interface materials[J]. Nanotechnology, 32, 092001(2021).
[40] Ma B, Xu C T, Cui L S et al. Magnetic printing of liquid metal for perceptive soft actuators with embodied intelligence[J]. ACS Applied Materials & Interfaces, 13, 5574-5582(2021).
[41] Wu J, Tang S Y, Fang T et al. A wheeled robot driven by a liquid-metal droplet[J]. Advanced Materials, 30, e1805039(2018).
[42] Ye J, Chen J Y, Liu J. A liquid metal robot driven by hybrid-fluid[J]. Scientia Sinica (Technologica), 49, 619-626(2019).
[43] Wang H Z, Chen S, Yuan B et al. Liquid metal transformable machines[J]. Accounts of Materials Research, 2, 1227-1238(2021).
[44] Zhang J, Yao Y Y, Sheng L et al. Self-fueled biomimetic liquid metal mollusk[J]. Advanced Materials, 27, 2648-2655(2015).
[45] Wang Q, Yu Y, Yang J et al. Fast fabrication of flexible functional circuits based on liquid metal dual-trans printing[J]. Advanced Materials, 27, 7109-7116(2015).
[46] Chen S, Wang H Z, Zhao R Q et al. Liquid metal composites[J]. Matter, 2, 1446-1480(2020).
[47] Zhang J Z, Zhang K Y, Yong J L et al. Femtosecond laser preparing patternable liquid-metal-repellent surface for flexible electronics[J]. Journal of Colloid and Interface Science, 578, 146-154(2020).
[48] Xu K C, Fujita Y, Lu Y Y et al. A wearable body condition sensor system with wireless feedback alarm functions[J]. Advanced Materials, 33, e2008701(2021).
[49] Tang L X, Shang J, Jiang X Y. Multilayered electronic transfer tattoo that can enable the crease amplification effect[J]. Science Advances, 7, eabe3778(2021).
[50] Spells K E. The determination of the viscosity of liquid gallium over an extended nrange of temperature[J]. Proceedings of the Physical Society, 48, 299-311(1936).
[51] Zhang J, Sheng L, Liu J. Synthetically chemical-electrical mechanism for controlling large scale reversible deformation of liquid metal objects[J]. Scientific Reports, 4, 7116(2014).
[52] Larsen R J, Dickey M D, Whitesides G M et al. Viscoelastic properties of oxide-coated liquid metals[J]. Journal of Rheology, 53, 1305-1326(2009).
[53] Kim D, Thissen P, Viner G et al. Recovery of nonwetting characteristics by surface modification of gallium-based liquid metal droplets using hydrochloric acid vapor[J]. ACS Applied Materials & Interfaces, 5, 179-185(2013).
[54] Davis E, Ndao S. On the wetting states of low melting point metal Galinstan® on silicon microstructured surfaces[J]. Advanced Engineering Materials, 20, 1700829(2018).
[55] Kadlaskar S S, Yoo J H, Abhijeet et al. Cost-effective surface modification for Galinstan® lyophobicity[J]. Journal of Colloid and Interface Science, 492, 33-40(2017).
[56] Wang L, He Z Z, Ding Y J et al. The rebound motion of liquid metal droplet on flexible micro/nano needle forest[J]. Advanced Materials Interfaces, 3, 1600008(2016).
[57] Young T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 95, 65-87(1805).
[58] Law K Y. Definitions for hydrophilicity, hydrophobicity, and superhydrophobicity: getting the basics right[J]. The Journal of Physical Chemistry Letters, 5, 686-688(2014).
[59] Li H Y, Mu P, Li J et al. Inverse desert beetle-like ZIF-8/PAN composite nanofibrous membrane for highly efficient separation of oil-in-water emulsions[J]. Journal of Materials Chemistry A, 9, 4167-4175(2021).
[60] Zhang P C, Wang S S, Wang S T et al. Superwetting surfaces under different media: effects of surface topography on wettability[J]. Small, 11, 1939-1946(2015).
[61] Lam C N C, Wu R, Li D et al. Study of the advancing and receding contact angles: liquid sorption as a cause of contact angle hysteresis[J]. Advances in Colloid and Interface Science, 96, 169-191(2002).
[62] McHale G, Shirtcliffe N J, Newton M I. Contact-angle hysteresis on super-hydrophobic surfaces[J]. Langmuir, 20, 10146-10149(2004).
[63] Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 28, 988-994(1936).
[64] Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 40, 546-551(1944).
[65] Liu X J, Ye Q, Song X W et al. Responsive wetting transition on superhydrophobic surfaces with sparsely grafted polymer brushes[J]. Soft Matter, 7, 515-523(2011).
[66] Chen P P, Chen L, Han D et al. Wetting behavior at micro-/ nanoscales: direct imaging of a microscopic water/air/solid three-phase interface[J]. Small, 5, 908-912(2009).
[67] Chen Z Y, Lee J B. Surface modification with gallium coating as nonwetting surfaces for gallium-based liquid metal droplet manipulation[J]. ACS Applied Materials & Interfaces, 11, 35488-35495(2019).
[68] Handschuh-Wang S, Wang T, Zhu L F et al. Corrosion-resistant functional diamond coatings for reliable interfacing of liquid metals with solid metals[J]. ACS Applied Materials & Interfaces, 12, 40891-40900(2020).
[69] Zhang J Z, Yong J L, Zhang C J et al. Liquid metal-based reconfigurable and repairable electronics designed by a femtosecond laser[J]. ACS Applied Electronic Materials, 2, 2685-2691(2020).
[70] Zhao R Q, Guo R, Xu X L et al. A fast and cost-effective transfer printing of liquid metal inks for three-dimensional wiring in flexible electronics[J]. ACS Applied Materials & Interfaces, 12, 36723-36730(2020).
[71] Yoon Y, Kim D, Lee J B. Hierarchical micro/nano structures for super-hydrophobic surfaces and super-lyophobic surface against liquid metal[J]. Micro and Nano Systems Letters, 2, 3(2014).
[72] Zhang D S, Sugioka K. Hierarchical microstructures with high spatial frequency laser induced periodic surface structures possessing different orientations created by femtosecond laser ablation of silicon in liquids[J]. Opto-Electronic Advances, 2, 19000201-19000218(2019).
[73] Kim M G, Brown D K, Brand O. Nanofabrication for all-soft and high-density electronic devices based on liquid metal[J]. Nature Communications, 11, 1002(2020).
[74] Matsuhisa N, Chen X D, Bao Z N et al. Materials and structural designs of stretchable conductors[J]. Chemical Society Reviews, 48, 2946-2966(2019).
[75] Dickey M D. Stretchable and soft electronics using liquid metals[J]. Advanced Materials, 29, 1606425(2017).
[76] Leber A, Dong C Q, Chandran R et al. Soft and stretchable liquid metal transmission lines as distributed probes of multimodal deformations[J]. Nature Electronics, 3, 316-326(2020).
[77] Lee J, Ihle S J, Pellegrino G S et al. Stretchable and suturable fibre sensors for wireless monitoring of connective tissue strain[J]. Nature Electronics, 4, 291-301(2021).
[78] Cui Z Q, Wang W S, Guo L L et al. Haptically quantifying Young's modulus of soft materials using a self-locked stretchable strain sensor[J]. Advanced Materials, 2104078(2021).
[79] Bai X, Yang Q, Fang Y et al. Superhydrophobicity-memory surfaces prepared by a femtosecond laser[J]. Chemical Engineering Journal, 383, 123143(2020).
[80] Wu D, Wang J N, Wu S Z et al. Three-level biomimetic rice-leaf surfaces with controllable anisotropic sliding[J]. Advanced Functional Materials, 21, 2927-2932(2011).
[81] Luo X, Liu W J, Zhang H J et al. Ultrafast laser fabricating of controllable micro-nano dual-scale metallic surface structures and their functionalization[J]. Chinese Journal of Lasers, 48, 1502002(2021).
[82] Wang Q H, Wang H X, Wang Z D et al. Highly efficient nanosecond laser-based multifunctional surface fabrication and corrosion resistance performance[J]. Chinese Journal of Lasers, 48, 1402018(2021).
[83] Zhang D S, Chen F, Fang G P et al. Wetting characteristics on hierarchical structures patterned by a femtosecond laser[J]. Journal of Micromechanics and Microengineering, 20, 075029(2010).
[84] Yong J L, Yang Q, Guo C L et al. A review of femtosecond laser-structured superhydrophobic or underwater superoleophobic porous surfaces/materials for efficient oil/water separation[J]. RSC Advances, 9, 12470-12495(2019).
[85] Pan A, Gao B, Chen T et al. Fabrication of concave spherical microlenses on silicon by femtosecond laser irradiation and mixed acid etching[J]. Optics Express, 22, 15245-15250(2014).
[86] Yong J L, Chen F, Huo J L et al. Green, biodegradable, underwater superoleophobic wood sheet for efficient oil/water separation[J]. ACS Omega, 3, 1395-1402(2018).
[87] Yong J L, Chen F, Yang Q et al. Controllable adhesive superhydrophobic surfaces based on PDMS microwell arrays[J]. Langmuir, 29, 3274-3279(2013).
[88] Yong J L, Chen F, Yang Q et al. Femtosecond laser controlled wettability of solid surfaces[J]. Soft Matter, 11, 8897-8906(2015).
[89] Yong J L, Yang Q, Chen F et al. A simple way to achieve superhydrophobicity, controllable water adhesion, anisotropic sliding, and anisotropic wetting based on femtosecond-laser-induced line-patterned surfaces[J]. Journal of Materials Chemistry A, 2, 5499-5507(2014).
[90] Jiang Y B, Su S K, Peng H R et al. Selective wetting/dewetting for controllable patterning of liquid metal electrodes for all-printed device application[J]. Journal of Materials Chemistry C, 5, 12378-12383(2017).
[91] Shan C, Zhang C J, Liang J et al. Femtosecond laser hybrid fabrication of a 3D microfluidic chip for PCR application[J]. Optics Express, 28, 25716-25722(2020).
[92] Jia Y C, Wang S X, Chen F. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrication and application[J]. Opto-Electronic Advances, 3, 190042(2020).
[93] Yong J L, Zhang C J, Bai X et al. Designing “supermetalphobic” surfaces that greatly repel liquid metal by femtosecond laser processing: does the surface chemistry or microstructure play a crucial role?[J]. Advanced Materials Interfaces, 7, 1901931(2020).
[94] Zhang C J, Yang Q, Shan C et al. Tuning a surface super-repellent to liquid metal by a femtosecond laser[J]. RSC Advances, 10, 3301-3306(2020).
[95] Lu T, Markvicka E J, Jin Y C et al. Soft-matter printed circuit board with UV laser micropatterning[J]. ACS Applied Materials & Interfaces, 9, 22055-22062(2017).
[96] Jiang Q, Zhang S, Jiang J J et al. Pneumatic enabled vertical interconnect access of liquid alloy circuits toward highly integrated stretchable electronics[J]. Advanced Materials Technologies, 6, 2000966(2021).
[97] Wang M, Luo Y F, Wang T et al. Artificial skin perception[J]. Advanced Materials, 33, e2003014(2021).
[98] Chen Y, Zhang Y C, Liang Z W et al. Flexible inorganic bioelectronics[J]. Npj Flexible Electronics, 4, 2(2020).
[99] Liu Y, Wang H, Zhao W et al. Flexible, stretchable sensors for wearable health monitoring: sensing mechanisms, materials, fabrication strategies and features[J]. Sensors, 18, 645(2018).
[100] Yang J, Cheng W L, Kalantar-Zadeh K. Electronic skins based on liquid metals[J]. Proceedings of the IEEE, 107, 2168-2184(2019).
[101] Gao Y, Ota H, Schaler E W et al. Wearable microfluidic diaphragm pressure sensor for health and tactile touch monitoring[J]. Advanced Materials, 29, e1701985(2017).
[102] Ma Z J, Huang Q Y, Xu Q et al. Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics[J]. Nature Materials, 20, 859-868(2021).
[103] Chu B, Burnett W, Chung J W et al. Bring on the body NET[J]. Nature, 549, 328-330(2017).
[104] Pyo S, Lee J, Bae K et al. Recent progress in flexible tactile sensors for human-interactive systems: from sensors to advanced applications[J]. Advanced Materials, 33, e2005902(2021).
[105] Shintake J, Cacucciolo V, Floreano D et al. Soft robotic grippers[J]. Advanced Materials, e1707035(2018).
[106] Liu H C, Yang M K, Yuan X et al. Liquid metal based flexible sensors for soft manipulator towards human-machine interaction[J]. China Mechanical Engineering, 32, 1470-1478(2021).
[107] Li G R, Chen X P, Zhou F H et al. Self-powered soft robot in the Mariana Trench[J]. Nature, 591, 66-71(2021).
[108] Cao L X, Yu D H, Xia Z S et al. Ferromagnetic liquid metal putty-like material with transformed shape and reconfigurable polarity[J]. Advanced Materials, 32, e2000827(2020).
Get Citation
Copy Citation Text
Haoyu Li, Chengjun Zhang, Qing Yang, Xun Hou, Feng Chen. Liquid Metal Based Flexible Electronics Fabricated by Laser and its Applications[J]. Chinese Journal of Lasers, 2022, 49(10): 1002505
Received: Nov. 30, 2021
Accepted: Jan. 24, 2022
Published Online: May. 9, 2022
The Author Email: Chen Feng (chengfeng@mail.xjtu.edu.cn)