Acta Laser Biology Sinica, Volume. 33, Issue 5, 418(2024)

Application of Synthetic Microorganisms in Water Pollution Prevention and Control

LIN Yaqian1, SHUAI Feifei2, and WANG Fang2、*
Author Affiliations
  • 1Guangxi University of Chinese Medicine, Nanning 530200, China
  • 2Intensive Care Unit, Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Shenzhen Institute of Translational Medicine, Shenzhen Second People′s Hospital, Shenzhen 518035, China
  • show less
    References(114)

    [1] [1] JANET JOSHIBA G, SENTHIL KUMAR P, CHRISTOPHER F C, et al. Insights of CMNPs in water pollution control[J]. IET Nanobiotechnology, 2019, 13(6): 553-559.

    [2] [2] XIANG L, LI G, WEN L, et al. Biodegradation of aromatic pollutants meets synthetic biology[J]. Synthetic and Systems Biotechnology, 2021, 6(3): 153-162.

    [3] [3] TRIPATHI M, SINGH S, PATHAK S, et al. Recent strategies for the remediation of textile dyes from wastewater: a systematic review[J]. Toxics, 2023, 11(11): 940.

    [4] [4] ZHANG Y, YU H, ZHAI R, et al. Recent progress in photocatalytic degradation of water pollution by bismuth tungstate[J]. Molecules, 2023, 28(24): 8011.

    [5] [5] NAGDA A, MEENA M, SHAH M P. Bioremediation of industrial effluents: a synergistic approach[J]. Journal of Basic Microbiology, 2022, 62(3/4): 395-414.

    [6] [6] DUTTA D, ARYA S, KUMAR S. Industrial wastewater treatment: current trends, bottlenecks, and best practices[J]. Chemosphere, 2021, 285: 131245.

    [7] [7] MAO G, HAN Y, LIU X, et al. Technology status and trends of industrial wastewater treatment: a patent analysis[J]. Chemosphere, 2022, 288(Pt 2): 132483.

    [8] [8] PRABAKAR D, SUVETHA K S, MANIMUDI V T, et al. Pretreatment technologies for industrial effluents: critical review on bioenergy production and environmental concerns[J]. Journal of Environmental Management, 2018, 218: 165-180.

    [9] [9] RAJ A, DUBEY A, MALLA M A, et al. Pesticide pestilence: global scenario and recent advances in detection and degradation methods[J]. Journal of Environmental Management, 2023, 338:117680.

    [10] [10] TUDI M, DANIEL RUAN H, WANG L, et al. Agriculture development, pesticide application and its impact on the environment[J]. International Journal of Environmental Research and Public Health, 2021, 18(3): 1112.

    [11] [11] SYAFRUDIN M, KRISTANTI R A, YUNIARTO A, et al. Pesticides in drinking water: a review[J]. International Journal of Environmental Research and Public Health, 2021, 18(2): 468.

    [12] [12] BOONUPARA T, UDOMKUN P, KHAN E, et al. Airborne pesticides from agricultural practices: a critical review of pathways, influencing factors, and human health implications[J]. Toxics, 2023, 11(10): 858.

    [13] [13] MACKULAK T, CVERENKROV K, VOJS STAOV A, et al. Hospital wastewater-source of specific micropollutants, antibiotic-resistant microorganisms, viruses, and their elimination[J]. Antibiotics (Basel), 2021, 10(9): 1070.

    [14] [14] DEKKER H M, STROOMBERG G J, PROKOP M. Tackling the increasing contamination of the water supply by iodinated contrast media[J]. Insights into Imaging, 2022, 13(1): 30.

    [15] [15] TANG Y, ZHAO S, PENG Z, et al. Cu2O nanoparticles anchored on carbon for the efficient removal of propofol from operating room wastewater via peroxymonosulfate activation: efficiency, mechanism, and pathway[J]. Royal Society of Chemistry, 2021,11(34): 20983-20991.

    [16] [16] BALAKRISHNAN A, JACOB M M, SENTHIL KUMAR P, et al. Strategies for safe management of hospital wastewater during the COVID-19 pandemic[J]. International Journal of Environmental Science and Technology: IJEST, 2023, 20(12): 1-16.

    [17] [17] RODRGUEZ-SERIN H, GAMEZ-JARA A, DE LA CRUZNORIEGA M, et al. Literature review: evaluation of drug removal techniques in municipal and hospital wastewater[J]. International Journal of Environmental Research and Public Health, 2022,19(20): 13105.

    [18] [18] PARIENTE M I, SEGURA Y, LVAREZ-TORRELLAS S, et al. Critical review of technologies for the on-site treatment of hospital wastewater: from conventional to combined advanced processes[J]. Journal of Environmental Management, 2022, 320: 115769.

    [19] [19] WIDYARANI, WULAN D R, HAMIDAH U, et al. Domestic wastewater in Indonesia: generation, characteristics and treatment[J]. Environmental Science and Pollution Research International, 2022, 29(22): 32397-32414.

    [20] [20] BAJPAI M, KATOCH S S, CHATURVEDI N K. Comparative study on decentralized treatment technologies for sewage and graywater reuse: a review[J]. Water Science and Technology, 2019, 80(11): 2091-2106.

    [21] [21] ZHANG W, CHU H, YANG L, et al. Technologies for pollutant removal and resource recovery from blackwater: a review[J]. Frontiers of Environmental Science & Engineering, 2023, 17(7):83.

    [22] [22] KHAJVAND M, MOSTAFAZADEH A K, DROGUI P, et al. Greywater characteristics, impacts, treatment, and reclamation using adsorption processes towards the circular economy[J]. Environmental Science and Pollution Research International, 2022, 29(8):10966-11003.

    [23] [23] RASHID R, SHAFIQ I, AKHTER P, et al. A state-of-the-art review on wastewater treatment techniques: the effectiveness of adsorption method[J]. Environmental Science and Pollution Research International, 2021, 28(8): 1-17.

    [24] [24] KIM S, NAM S N, JANG A, et al. Review of adsorption-membrane hybrid systems for water and wastewater treatment[J]. Chemosphere, 2022, 286(Pt 3): 131916.

    [25] [25] KARIMI-MALEH H, SHAFIEIZADEH M, TAHER M A, et al. The role of magnetite/graphene oxide nano-composite as a high-efficiency adsorbent for removal of phenazopyridine residues from water samples, an experimental/theoretical investigation[J]. Journal of Molecular Liquids, 2020, 298: 112040.

    [26] [26] SPONZA D T, ALICANOGLU P. Reuse and recovery of raw hospital wastewater containing ofloxacin after photocatalytic treatment with nano graphene oxide magnetite[J]. Water Science and Technology, 2018, 77(1/2): 304-322.

    [27] [27] AZUMA T, KATAGIRI M, SEKIZUKA T, et al. Inactivation of bacteria and residual antimicrobials in hospital wastewater by ozone treatment[J]. Antibiotics, 2022, 11(7): 862.

    [28] [28] TAOUFIK N, BOUMYA W, ACHAK M, et al. Comparative overview of advanced oxidation processes and biological approaches for the removal pharmaceuticals[J]. Journal of Environmental Management, 2021, 288: 112404.

    [29] [29] GARRIDO-CARDENAS J A, ESTEBAN-GARCA B, AGERA A, et al. Wastewater treatment by advanced oxidation process and their worldwide research trends[J]. International Journal of Environmental Research and Public Health, 2019, 17(1): 170.

    [30] [30] YANG W, LIU G, CHEN Y, et al. Persulfate enhanced electrochemical oxidation of highly toxic cyanide-containing organic wastewater using boron-doped diamond anode[J]. Chemosphere, 2020, 252: 126499.

    [31] [31] SAEED M U, HUSSAIN N, SUMRIN A, et al. Microbial bioremediation strategies with wastewater treatment potentialities: a review[J]. Science of the Total Environment, 2022, 818: 151754.

    [32] [32] SHARMA M, AGARWAL S, AGARWAL MALIK R, et al. Recent advances in microbial engineering approaches for wastewater treatment: a review[J]. Bioengineered, 2023, 14(1): 2184518.

    [33] [33] PATEL H, YADAV V K, YADAV K K, et al. A recent and systemic approach towards microbial biodegradation of dyes from textile industries[J]. Water, 2022, 14(19): 3163.

    [34] [34] MANTOVANI M, ROSSI S, FICARA E, et al. Removal of pharmaceutical compounds from the liquid phase of anaerobic sludge in a pilot-scale high-rate algae-bacteria pond[J]. Science of the Total Environment, 2024, 908: 167881.

    [35] [35] CERETTA M B, NERCESSIAN D, WOLSKI E A. Current trends on role of biological treatment in integrated treatment technologies of textile wastewater[J]. Frontiers in Microbiology, 2021, 12:651025.

    [36] [36] AMINIAN-DEHKORDI J, RAHIMI S, GOLZAR-AHMADI M, et al. Synthetic biology tools for environmental protection[J]. Biotechnology Advances, 2023, 68: 108239.

    [37] [37] CHAKRABORTY R, WU C H, HAZEN T C. Systems biology approach to bioremediation[J]. Current Opinion in Biotechnology, 2012, 23(3): 483-490.

    [38] [38] LIU Y, SU A, LI J, et al. Towards next-generation model microorganism chassis for biomanufacturing[J]. Applied Microbiology and Biotechnology, 2020, 104(21): 1-14.

    [39] [39] DE LORENZO V, KRASNOGOR N, SCHMIDT M. For the sake of the bioeconomy: define what a synthetic biology chassis is![J]. New Biotechnology, 2021, 60: 44-51.

    [40] [40] GARNER K L. Principles of synthetic biology[J]. Essays in Biochemistry, 2021, 65(5): 791-811.

    [41] [41] SRIDHAR S, AJO-FRANKLIN C M, MASIELLO C A. A framework for the systematic selection of biosensor chassis for environmental synthetic biology[J]. ACS Synthetic Biology, 2022,11(9): 2909-2916.

    [42] [42] AHANKOUB M, MARDANI G, GHASEMI-DEHKORDI P, et al. Biodecomposition of phenanthrene and pyrene by a genetically engineered Escherichia coli[J]. Recent Patents on Biotechnology, 2020, 14(2): 121-133.

    [43] [43] TONG C, LIANG Y, ZHANG Z, et al. Review of knockout technology approaches in bacterial drug resistance research[J]. PeerJ, 2023, 11: e15790.

    [44] [44] YU M, HU S, TANG B, et al. Engineering Escherichia coli Nissle 1917 as a microbial chassis for therapeutic and industrial applications[J]. Biotechnology Advances, 2023, 67: 108202.

    [45] [45] PU W, CHEN J, ZHOU Y, et al. Systems metabolic engineering of Escherichia coli for hyper-production of 5-aminolevulinic acid[J]. Biotechnology for Biofuels and Bioproducts, 2023, 16(1):31.

    [46] [46] GE J, WANG X, BAI Y, et al. Engineering Escherichia coli for efficient assembly of heme proteins[J]. Microbial Cell Factories, 2023, 22(1): 59.

    [47] [47] LI Q, SUN B, CHEN J, et al. A modified pCas/pTargetF system for CRISPR-Cas9-assisted genome editing in Escherichia coli[J]. Acta Biochim Biophys Sin (Shanghai), 2021, 53(5): 620-627.

    [48] [48] MORI H, KATAOKA M, YANG X. Past, present, and future of genome modification in Escherichia coli[J]. Microorganisms, 2022, 10(9): 1835.

    [49] [49] ZHU L, LIANG Z, XU Y, et al. Ultrasensitive and rapid visual detection of Escherichia coli O157: H7 based on RAA-CRISPR/Cas12a system[J]. Biosensors, 2023, 13(6): 659.

    [50] [50] WANG B, XU J, GAO J, et al. Construction of an Escherichia coli strain to degrade phenol completely with two modified metabolic modules[J]. Journal of Hazardous Materials, 2019, 373:29-38.

    [51] [51] WANG Y, TIAN Y S, GAO J J, et al. Complete biodegradation of the oldest organic herbicide 2,4-dichlorophenoxyacetic acid by engineering Escherichia coli[J]. Journal of Hazardous Materials, 2023, 451: 131099.

    [52] [52] LV X, LI Y, XIU X, et al. CRISPR genetic toolkits of classical food microorganisms: current state and future prospects[J]. Biotechnology Advances, 2023, 69: 108261.

    [53] [53] WEIMER A, KOHLSTEDT M, VOLKE D C, et al. Industrial biotechnology of Pseudomonas putida: advances and prospects[J]. Applied Microbiology and Biotechnology, 2020, 104(18):7745-7766.

    [54] [54] SUN J, WANG Q, JIANG Y, et al. Genome editing and transcriptional repression in Pseudomonas putida KT2440 via the type II CRISPR system[J]. Microbial Cell Factories, 2018, 17(1): 41.

    [55] [55] MARTNEZ-GARCA E, DE LORENZO V. Pseudomonas putida as a synthetic biology chassis and a metabolic engineering platform[J]. Current Opinion in Biotechnology, 2024, 85: 103025.

    [56] [56] APARICIO T, DE LORENZO V, MARTNEZ-GARCA E. CRISPR/Cas9-enhanced ssDNA recombineering for Pseudomonas putida[J]. Microbial Biotechnology, 2019, 12(5): 1076-1089.

    [57] [57] LIANG T, SUN J, JU S, et al. Construction of T7-like expression system in Pseudomonas putida KT2440 to enhance the heterologous expression level[J]. Frontiers in Chemistry, 2021, 9:664967.

    [58] [58] GONG T, LIU R, ZUO Z, et al. Metabolic engineering of Pseudomonas putida KT2440 for complete mineralization of methyl parathion and -Hexachlorocyclohexane[J]. ACS Synthetic Biology, 2016, 5(5): 434-442.

    [59] [59] LIANG P, ZHANG Y, XU B, et al. Deletion of genomic islands in the Pseudomonas putida KT2440 genome can create an optimal chassis for synthetic biology applications[J]. Microbial Cell Factories, 2020, 19(1): 70.

    [60] [60] FERRANDO J, FILLUELO O, ZEIGLER D R, et al. Barriers to simultaneous multilocus integration in Bacillus subtilis tumble down: development of a straightforward screening method for the colorimetric detection of one-step multiple gene insertion using the CRISPR-Cas9 system[J]. Microbial Cell Factories, 2023, 22(1):21.

    [61] [61] GHATAORA J S, GEBHARD S, REEKSTING B J. Chimeric MerR-Family regulators and logic elements for the design of metal sensitive genetic circuits in Bacillus subtilis[J]. ACS Synthetic Biology, 2023, 12(3): 735-749.

    [62] [62] SU Y, LIU C, FANG H, et al. Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine[J]. Microbial Cell Factories, 2020, 19(1): 173.

    [63] [63] ZHU W, LIU Y, CAO X, et al. Recovering organic matters and ions from wastewater by genetically engineered Bacillus subtilis biomass[J]. Journal of Environmental Management, 2015, 161:402-407.

    [64] [64] QIN Y, ANGELINI L L, CHAI Y. Bacillus subtilis cell differentiation, biofilm formation and environmental prevalence[J]. Microorganisms, 2022, 10(6): 1108.

    [65] [65] MOHSIN M Z, OMER R, HUANG J, et al. Advances in engineered Bacillus subtilis biofilms and spores, and their applications in bioremediation, biocatalysis, and biomaterials[J]. Synthetic and Systems Biotechnology, 2021, 6(3): 180-191.

    [66] [66] SHI Y, CHEN T, SHAW P, et al. Manipulating bacterial biofilms using materiobiology and synthetic biology approaches[J]. Frontiers in Microbiology, 2022, 13: 844997.

    [67] [67] LI C, SUN Y, YUE Z, et al. Combination of a recombinant bacterium with organonitrile-degrading and biofilm-forming capability and a positively charged carrier for organonitriles removal[J]. Journal of Hazardous Materials, 2018, 353: 372-380.

    [68] [68] ZHU X, XIANG Q, CHEN L, et al. Engineered Bacillus subtilis Biofilm@Biochar living materials for in-situ sensing and bioremediation of heavy metal ions pollution[J]. Journal of Hazardous Materials, 2024, 465: 133119.

    [69] [69] WU Y, FENG S, SUN Z, et al. An outlook to sophisticated technologies and novel developments for metabolic regulation in the Saccharomyces cerevisiae expression system[J]. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1249841.

    [70] [70] TANG H, WU Y, DENG J, et al. Promoter architecture and promoter engineering in Saccharomyces cerevisiae[J]. Metabolites, 2020, 10(8): 320.

    [71] [71] PARAPOULI M, VASILEIADIS A, AFENDRA A S, et al. Saccharomyces cerevisiae and its industrial applications[J]. AIMS Microbiology, 2020, 6(1): 1-31.

    [72] [72] CHEN B, LEE H L, HENG Y C, et al. Synthetic biology toolkits and applications in Saccharomyces cerevisiae[J]. Biotechnology Advances, 2018, 36(7): 1870-1881.

    [73] [73] SATO G, KURODA K. Overcoming the limitations of CRISPRCas9 systems in Saccharomyces cerevisiae: off-target effects, epigenome, and mitochondrial editing[J]. Microorganisms, 2023,11(4): 1040.

    [74] [74] FAN C, ZHANG D, MO Q, et al. Engineering Saccharomyces cerevisiae-based biosensors for copper detection[J]. Microbial Biotechnology, 2022, 15(11): 2854-2860.

    [75] [75] ITO-HARASHIMA S, MIZUTANI Y, NISHIMURA M, et al. A pilot study for construction of a new cadmium-sensing yeast strain carrying a reporter plasmid with the JLP1 promoter[J]. The Journal of Toxicological Sciences, 2017, 42(1): 103-109.

    [76] [76] RUTA L L, LIN Y F, KISSEN R, et al. Anchoring plant metallothioneins to the inner face of the plasma membrane of Saccharomyces cerevisiae cells leads to heavy metal accumulation[J]. PLoS One, 2017, 12(5): e0178393.

    [77] [77] MASHANGOANE B F, CHIRWA E N. Cell surface display of palladium binding peptide on Saccharomyces cerevisiae EBY100 cells using the a-agglutinin anchor system developed for the biosorption of Pd (II)[J]. Minerals Engineering, 2022, 176: 107325.

    [78] [78] YE J, CHEN G. Halomonas as a chassis[J]. Essays in Biochemistry, 2021, 65(2): 393-403.

    [79] [79] AMINI B, OTADI M, PARTOVINIA A. Statistical modeling and optimization of toluidine red biodegradation in a synthetic wastewater using Halomonas strain Gb[J]. Journal of Environmental Health Science & Engineering, 2019, 17(1): 319-330.

    [80] [80] LIU C, YUE Y, XUE Y, et al. CRISPR-Cas9 assisted nonhomologous end joining genome editing system of Halomonas bluephagenesis for large DNA fragment deletion[J]. Microbial Cell Factories, 2023, 22(1): 211.

    [81] [81] MORALES-REYES C F, GHADERIARDAKANI F, WICHARD T. Genome sequence of Halomonas sp. strain MS1, a metallophore-producing, algal growth-promoting marine bacterium isolated from the green seaweed Ulva mutabilis (Chlorophyta)[J]. Microbiology Resource Announcements, 2022, 11(11): e00685-22.

    [82] [82] LVAREZ-HUBERT I, DURN R E, VEGA-CELEDN P, et al. Draft genome sequences of halotolerant Halomonas spp. SpR1 and SpR8, potential plant growth-promoting bacteria associated with Salicornia rhizosphere in a hydrothermal lagoon ecosystem of the Altiplano, Northern Chile[J]. Microbiology Resource Announcements, 2024, 13(1): e00822-23.

    [83] [83] LACH J, STRAPAGIEL D, MATERA-WITKIEWICZ A, et al. Draft genomes of halophilic Chromohalobacter and Halomonas strains isolated from brines of the Carpathian Foreland, Poland[J]. Journal of Genomics, 2023, 11: 14-19.

    [84] [84] XU M, CHANG Y, ZHANG Y, et al. Development and application of transcription terminators for polyhydroxylkanoates production in halophilic Halomonas bluephagenesis TD01[J]. Frontiers in Microbiology, 2022, 13: 941306.

    [85] [85] SCHADA VON BORZYSKOWSKI L. Taking synthetic biology to the seas: from blue chassis organisms to marine aquaforming[J]. ChemBioChem, 2023, 24(13): e202200786.

    [86] [86] TSUJI A, TAKEI Y, AZUMA Y. Establishment of genetic tools for genomic DNA engineering of Halomonas sp. KM-1, a bacterium with potential for biochemical production[J]. Microbial Cell Factories, 2022, 21(1): 122.

    [87] [87] JI M, ZHENG T, WANG Z, et al. PHB production from food waste hydrolysates by Halomonas bluephagenesis harboring PHB operon linked with an essential gene[J]. Metabolic Engineering, 2023, 77: 12-20.

    [88] [88] KLEINSTEUBER S, MLLER R H, BABEL W. Expression of the 2,4-D degradative pathway of pJP4 in an alkaliphilic, moderately halophilic soda lake isolate, Halomonas sp. EF43[J]. Extremophiles, 2001, 5(6): 375-384.

    [89] [89] SANTALA S, SANTALA V. Acinetobacter baylyi ADP1-naturally competent for synthetic biology[J]. Essays in Biochemistry, 2021, 65(2): 309-318.

    [90] [90] BIGGS B W, BEDORE S R, ARVAY E, et al. Development of a genetic toolset for the highly engineerable and metabolically versatile Acinetobacter baylyi ADP1[J]. Nucleic Acids Research, 2020, 48(9): 5169-5182.

    [91] [91] SUREZ G A, RENDA B A, DASGUPTA A, et al. Reduced mutation rate and increased transformability of transposon-free Acinetobacter baylyi ADP1-ISx[J]. Applied and Environmental Microbiology, 2017, 83(17): e01025-17.

    [92] [92] SUREZ G A, DUGAN K R, RENDA B A, et al. Rapid and assured genetic engineering methods applied to Acinetobacter baylyi ADP1 genome streamlining[J]. Nucleic Acids Research, 2020, 48(8): 4585-4600.

    [94] [94] HUANG W, WANG H, ZHENG H, et al. Chromosomally located gene fusions constructed in Acinetobacter sp. ADP1 for the detection of salicylate[J]. Environmental Microbiology, 2005, 7(9):1339-1348.

    [95] [95] OZER E, ALFONTA L. Genetic code expansion of Vibrio natriegens[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9:594429.

    [96] [96] HOFF J, DANIEL B, STUKENBERG D, et al. Vibrio natriegens: an ultrafast-growing marine bacterium as emerging synthetic biology chassis[J]. Environmental Microbiology, 2020, 22(10):4394-4408.

    [97] [97] THOMA F, BLOMBACH B. Metabolic engineering of Vibrio natriegens[J]. Essays in Biochemistry, 2021, 65(2): 381-392.

    [98] [98] WU F, CHEN W, PENG Y, et al. Design and reconstruction of regulatory parts for fast-growing Vibrio natriegens synthetic biology[J]. ACS Synthetic Biology, 2020, 9(9): 2399-2409.

    [99] [99] DALIA T N, HAYES C A, STOLYAR S, et al. Multiplex genome editing by natural transformation (MuGENT) for synthetic biology in Vibrio natriegens[J]. ACS Synthetic Biology, 2017, 6(9):1650-1655.

    [100] [100] STUKENBERG D, HOFF J, FABER A, et al. NT-CRISPR, combining natural transformation and CRISPR-Cas9 counterselection for markerless and scarless genome editing in Vibrio natriegens[J]. Communications Biology, 2022, 5(1): 265.

    [101] [101] HUANG L, NI J, ZHONG C, et al. Establishment of a saltinduced bioremediation platform from marine Vibrio natriegens[J]. Communications Biology, 2022, 5(1): 1352.

    [102] [102] WU S, ZHENG H, WANG Y, et al. Cyanobacterial bioreporter of nitrate bioavailability in aquatic ecosystems[J]. Water Research, 2023, 247: 120749.

    [103] [103] SANTHANARAJAN A E, RHEE C, SUL W J, et al. Transcriptomic analysis of degradative pathways for azo dye acid blue 113 in Sphingomonas melonis B-2 from the dye wastewater treatment process[J]. Microorganisms, 2022, 10(2): 438.

    [105] [105] ZHAO Y, CHE Y, ZHANG F, et al. Development of an efficient pathway construction strategy for rapid evolution of the biodegradation capacity of Pseudomonas putida KT2440 and its application in bioremediation[J]. The Science of the Total Environment, 2021, 761: 143239.

    [106] [106] ZHANG W, DENG Y, CHEN Z, et al. Metabolic engineering of Escherichia coli for 2,4-dinitrotoluene degradation[J]. Ecotoxicology and Environmental Safety, 2023, 262: 115287.

    [107] [107] GONG T, XU X, DANG Y, et al. An engineered Pseudomonas putida can simultaneously degrade organophosphates, pyrethroids and carbamates[J]. Science of the Total Environment, 2018, 628:1258-1265.

    [109] [109] LIU H, ZHANG L, WANG W, et al. An intelligent synthetic bacterium for chronological toxicant detection, biodegradation, and its subsequent suicide[J]. Advanced Science, 2023, 10(31): e2304318.

    [110] [110] ZHANG L, QIU X, HUANG L, et al. Microbial degradation of multiple PAHs by a microbial consortium and its application on contaminated wastewater[J]. Journal of Hazardous Materials, 2021, 419: 126524.

    [111] [111] ZHANG Y, SHI K, CUI H, et al. Efficient biodegradation of acetoacetanilide in hypersaline wastewater with a synthetic halotolerant bacterial consortium[J]. Journal of Hazardous Materials, 2023,441: 129926.

    [112] [112] LOBSIGER N, STARK W J. Strategies of immobilizing cells in whole-cell microbial biosensor devices targeted for analytical field applications[J]. Analytical Sciences, 2019, 35(8): 839-947.

    [113] [113] HUI C, GUO Y, GAO C, et al. A tailored indigoidine-based wholecell biosensor for detecting toxic cadmium in environmental water samples[J]. Environmental Technology & Innovation, 2022, 27:102511.

    [114] [114] HUI C, GUO Y, LI H, et al. Differential detection of bioavailable mercury and cadmium based on a robust dual-sensing bacterial biosensor[J]. Frontiers in Microbiology, 2022, 13: 846524.

    [115] [115] DEL VALLE I, FULK E M, KALVAPALLE P, et al. Translating new synthetic biology advances for biosensing into the earth and environmental sciences[J]. Frontiers in Microbiology, 2020, 11:618373.

    [116] [116] NAGARAJAN D, LEE D J, VARJANI S, et al. Microalgae-based wastewater treatment-microalgae-bacteria consortia, multi-omics approaches and algal stress response[J]. Science of the Total Environment, 2022, 845: 157110.

    [117] [117] HOQUE M Z, ALQAHTANI A, SANKARAN S, et al. Enhanced biodegradation of phenanthrene and anthracene using a microalgal-bacterial consortium[J]. Frontiers in Microbiology, 2023, 14:1227210.

    Tools

    Get Citation

    Copy Citation Text

    LIN Yaqian, SHUAI Feifei, WANG Fang. Application of Synthetic Microorganisms in Water Pollution Prevention and Control[J]. Acta Laser Biology Sinica, 2024, 33(5): 418

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 15, 2024

    Accepted: Dec. 10, 2024

    Published Online: Dec. 10, 2024

    The Author Email: Fang WANG (yb57660@connect.um.edu.mo)

    DOI:10.3969/j.issn.1007-7146.2024.05.004

    Topics