Journal of Inorganic Materials, Volume. 34, Issue 3, 260(2019)
Lattice Thermal Conductivity in Thermoelectric Materials
[1] BELL L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems[D]. Science, 321, 1457-1461(2008).
[2] SNYDER G J, TOBERER E S. Complex thermoelectric materials[D]. Nature Materials, 7, 101-110(2008).
[3] LIU Y T, TANG Y L, XIN J Z et al. Valleytronics in thermoelectric materials[D]. npj Quantum Materials, 3, 9(2018).
[4] GE B H, interstitial defects. Advanced Materials, LI W, ZHENG L L et al[D], 29, 1605887-1-8(2017).
[5] BISWAS K, BLUM I D, HE J Q et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures[D]. Nature, 489, 414-418(2012).
[6] LO S H, ZHANG Y S, ZHAO L D et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals[D]. Nature, 508, 373-377(2014).
[7] CHEN Z W, JIAN Z Z, LI W et al. Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence[D]. Advanced Materials, 29, 1606768-1-8(2017).
[8] KIM S I, LEE K H, MUN H A et al. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics[D]. Science, 348, 109-114(2015).
[9] CHEN Z W, PEI Y Z, ZHANG X Y. Manipulation of phonon transport in thermoelectrics[D]. Advanced Materials, 30, 1705617-1-12(2018).
[10] DAY T, HE Y, ZHANG T S et al. High thermoelectric performance in non-toxic earth-abundant copper sulfide[D]. Advanced Materials, 26, 3974-3978(2014).
[11] LIU H L, SHI X, XU F F et al. Copper ion liquid-like thermoelectrics[D]. Nature Materials, 11, 422-425(2012).
[12] HANSON J O, LASKOW W, VINING C B et al. Thermoelectric properties of pressure-sintered Si0.8Ge0.2 thermoelectric alloys[D]. Journal of Applied Physics, 69, 4333-4340(1991).
[13] IWANAGA S, LALONDE A, PEI Y Z et al. High thermoelectric figure of merit in heavy hole dominated PbTe[D]. Energy & Environmental Science, 4, 2085-2089(2011).
[14] TOBERER E S, ZEIER W G, ZEVALKINK A et al. Ca3AlSb3: an inexpensive, non-toxic thermoelectric material for waste heat recovery[D]. Energy & Environmental Science, 4, 510-518(2011).
[15] MAY A F, SARAMAT A, TOBERER E S et al. Characterization and analysis of thermoelectric transport in n-type Ba8Ga16-xGe30+x[D]. Physical Review B, 80, 125205-1-12(2009).
[16] COX C A, LEVCHENKO A A, TOBERER E S et al. Structure, heat capacity, and high-temperature thermal properties of Yb14Mn1-xAlxSb11[D]. Chemistry of Materials, 21, 1354-1360(2009).
[17] SLACK G A. The thermal conductivity of nonmetallic crystals[D]. Solid State Physics, 34, 1-71(1979).
[18] SNYDER G J, TOBERER E S, ZEVALKINK A. Phonon engineering through crystal chemistry[D]. Journal of Materials Chemistry, 21, 15843-15852(2011).
[19] FIRDOSY S A, HU Y J, WANG Y et al. First-principles calculations of lattice dynamics and thermodynamic properties for Yb14MnSb11[D]. Journal of Applied Physics, 123, 045102-1-10(2018).
[20] BROWN S R, GASCOIN F, KAUZLARICH S M et al. Yb14MnSb11: new high efficiency thermoelectric material for power generation[D]. Chemistry of Materials, 18, 1873-1877(2006).
[21] CHEN Z, DENG S P, LI D C et al. Thermoelectric properties and thermal stability of Bi-doped PbTe single crystal[D]. Physica B: Condensed Matter, 538, 154-159(2018).
[22] LI X, WANG Y C, YING P J et al. Hierarchical chemical bonds contributing to the intrinsically low thermal conductivity in α-MgAgSb thermoelectric materials[D]. Advanced Functional Materials, 27, 1604145-1-8(2016).
[23] LI J Q, LI L F, SONG S H et al. High thermoelectric performance of GeTe-Ag8GeTe6 eutectic composites[D]. Journal of Alloys and Compounds, 565, 144-147(2013).
[24] FUJIKANE M, KUROSAKI K, MUTA H et al. Thermoelectric properties of Ag8GeTe6[D]. Journal of Alloys and Compounds, 396, 280-282(2005).
[25] CHANG L S, HOU Y H. Optimization on the figure-of-merit of p-type Ba8Ga16Ge30 type-I clathrate grown via the Bridgman method by fine tuning Ga/Ge ratio[D]. Journal of Alloys and Compounds, 736, 108-114(2018).
[26] IKEDA M, YAN X L, ZHANG L et al. Suppression of vacancies boosts thermoelectric performance in type-I clathrates[D]. Journal of Materials Chemistry A, 6, 1727-1735(2018).
[27] BEEKMAN M, VANDERGRAAFF A. High-temperature thermal conductivity of thermoelectric clathrates[D]. Journal of Applied Physics, 121, 205105(2017).
[28] ANTONELLI A, GONZALEZ-ROMERO R L. Estimating carrier relaxation times in the Ba8Ga16Ge30 clathrate in the extrinsic regime[D]. Physical Chemistry Chemical Physics, 19, 3010-3018(2017).
[29] ABRAHAMSEN A B, CHRISTENSEN M, CHRISTENSEN N B et al. Avoided crossing of rattler modes in thermoelectric materials[D]. Nature Materials, 7, 811-815(2008).
[30] CALLAWAY J. Model for lattice thermal conductivity at low temperatures[D]. Physical Review, 113, 1046-1051(1959).
[31] CHUNG J D, KAVIANY M, MCGAUGHEY A J H. Role of phonon dispersion in lattice thermal conductivity modeling[D]. Journal of Heat Transfer, 126, 376-380(2004).
[32] GALGINAITIS S, SLACK G A. Thermal conductivity and phonon scattering by magnetic impurities in CdTe[D]. Physical Review, 133, A253-A268(1964).
[33] HEREMANS J P. Thermoelectric materials: the anharmonicity blacksmith[D]. Nature Physics, 11, 990-991(2015).
[34] QIU W J, WEI P, XI L L et al. Part-crystalline part-liquid state and rattling-like thermal damping in materials with chemical-bond hierarchy[C]. Proceedings of the National Academy of Sciences, 111, 15031-15035(2014).
[35] BATHULA S, GAHTORI B, TYAGI K et al. Thermoelectric properties of Cu3SbSe3 with intrinsically ultralow lattice thermal conductivity[D]. Journal of Materials Chemistry A, 2, 15829-15835(2014).
[36] DELAIRE O, MA J, MARTY K et al. Giant anharmonic phonon scattering in PbTe[D]. Nature Materials, 10, 614-619(2011).
[37] ESFARJANI K, LEE S, LUO T F et al. Resonant bonding leads to low lattice thermal conductivity[D]. Nature Communications, 5, 3525-1-8(2014).
[38] FAHY S, MURPHY R M, MURRAY ÉD et al. Ferroelectric phase transition and the lattice thermal conductivity of Pb1-xGexTe alloys[D]. Physical Review B, 95, 144302-1-8(2017).
[39] CHEN Y, HE B, ZHU T J et al. Thermoelectric properties of non-stoichiometric AgSbTe2 based alloys with a small amount of GeTe addition[D]. Journal of Physics D: Applied Physics, 45, 115302(2012).
[40] CHEN C F, KE X Z, ZHANG Y et al. Thermodynamic properties of PbTe, PbSe,PbS: first-principles study[D]. Physical Review B, 80, 024304-1-12(2009).
[41] MILLER A J, SAUNDERS G A, YOGURTCU Y K. Pressure dependences of the elastic constants of PbTe, SnTe and Ge0.08Sn0.92Te[D]. Journal of Physics C: Solid State Physics, 14, 1569-1584(1981).
[42] ALEXANDER F Z, RALF P S, VOLKER L D et al. Ab initio lattice dynamics and thermochemistry of layered bismuth telluride (Bi2Te3)[D]. Journal of Physics: Condensed Matter, 28, 115401-1-7(2016).
[43] RINCÓN C, VALERI-GIL M L, WASIM S M. Room-temperature thermal conductivity and grüneisen parameter of the I-III-VI2 chalcopyrite compounds[D]. Physica Status Solidi (A), 147, 409-415(1995).
[44] CHU W G, JIN H, WANG H F et al. Thermodynamic properties of Mg2Si and Mg2Ge investigated by first principles method[D]. Journal of Alloys and Compounds, 499, 68-74(2010).
[45] BERNSTEIN N, FELDMAN J L, SINGH D J. Calculations of dynamical properties of skutterudites: thermal conductivity, thermal expansivity,atomic mean-square displacement[D]. Physical Review B, 81, 134301-1-11(2010).
[46] BHASKAR A, PAI Y H, WU W M et al. Low thermal conductivity and enhanced thermoelectric performance of nanostructured Al-doped ZnTe[D]. Ceramics International, 42, 1070-1076(2016).
[47] KATRE A, TANAKA I, TOGO A et al. First principles study of thermal conductivity cross-over in nanostructured zinc-chalcogenides[D]. Journal of Applied Physics, 117, 045102-1-6(2015).
[48] NUNES O A C. Piezoelectric surface acoustical phonon amplification in graphene on a GaAs substrate[D]. Journal of Applied Physics, 115, 233715-1-7(2014).
[49] REEBER R R. Thermal expansion of some group IV elements and ZnS[D]. Physica Status Solidi (a), 32, 321-331(1975).
[50] QIN L, SHEN Z X, TEO K L et al. Raman scattering of Ge/Si dot superlattices under hydrostatic pressure[D]. Physical Review B, 64, 075312-1-5(2001).
[51] KUROSAKI K, OHISHI Y, SILPAWILAWAN W et al. FeNbSb p-type half-Heusler compound: beneficial thermomechanical properties and high-temperature stability for thermoelectrics[D]. Journal of Materials Chemistry C, 5, 6677-6681(2017).
[52] BERNASCONI M, BOSONI E, SOSSO G C. Grüneisen parameters and thermal conductivity in the phase change compound GeTe[D]. Journal of Computational Electronics, 16, 997-1002(2017).
[53] GE B, LI W, LIN S et al. Low sound velocity contributing to the high thermoelectric performance of Ag8SnSe6[D]. Advanced Science, 3, 1600196-1-7(2016).
[54] CALLAWAY J, HANS C, VON B. Effect of point imperfections on lattice thermal conductivity[D]. Physical Review, 120, 1149-1154(1960).
[55] HAO F, QIU P F, TANG Y S et al. High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 ℃[D]. Energy & Environmental Science, 9, 3120-3127(2016).
[56] HU L P, LIU X H, ZHU T J et al. Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials[D]. Advanced Functional Materials, 24, 5211-5218(2014).
[57] LALONDA A, PEI Y Z, SHI X Y et al. Convergence of electronic bands for high performance bulk thermoelectrics[D]. Nature, 473, 66-69(2011).
[58] QIN Y T, QIU P F, SHI X et al. Thermoelectric properties for CuInTe2-xSx(x = 0, 0.05, 0.1, 0.15) solid solution[D]. Journal of Inorganic Materials, 32, 1171-1176(2017).
[59] HE J, JIANG G Y, ZHU T J et al. High performance Mg2(Si,Sn) solid solutions: a point defect chemistry approach to enhancing thermoelectric properties[D]. Advanced Functional Materials, 24, 3776-3781(2014).
[60] LIU X H, WANG H, ZHU T J et al. Low electron scattering potentials in high performance Mg2Si0.45Sn0.55 based thermoelectric solid solutions with band convergence[D]. Advanced Energy Materials, 3, 1238-1244(2013).
[61] BHANDARI C M, TRIPATHI M N. High-temperature thermoelectric performance of Si-Ge alloys[D]. Journal of Physics: Condensed Matter, 15, 5359-5370(2003).
[62] FU C G, PEI Y Z, ZHU T J et al. High band degeneracy contributes to high thermoelectric performance in p-type half-Heusler compounds[D]. Advanced Energy Materials, 4, 1400600-1-6(2014).
[63] XIA K Y, YU J J, ZHAO X B et al. High performance p-type half-Heusler thermoelectric materials[D]. Journal of Physics D: Applied Physics, 51, 113001(2018).
[64] FU C G, LIU Y T, SHEN J J et al. Enhancing thermoelectric performance of FeNbSb half-Heusler compound by Hf-Ti dual-doping[D]. Energy Storage Materials, 10, 69-74(2018).
[65] FU C G, LIU Y T, ZHU T J et al. Compromise and synergy in high-efficiency thermoelectric materials[D]. Advanced Materials, 29, 1605884-1-26(2017).
[66] FU C G, LIU Y T, WU H J et al. Enhancing the figure of merit of heavy-band thermoelectric materials through hierarchical phonon scattering[D]. Advanced Science, 3, 1600035-1-6(2016).
[67] FU C G, XIE H H, ZHU T J et al. High efficiency half-Heusler thermoelectric materials for energy harvesting[D]. Advanced Energy Materials, 5, 1500588-1-7(2015).
[68] BAI S Q, FU C G, LIU Y T et al. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials[D]. Nat. Commun., 6, 8144(2015).
[69] PEI Y Z, WANG H, XIE H H et al. Beneficial contribution of alloy disorder to electron and phonon transport in half-heusler thermoelectric materials[D]. Advanced Functional Materials, 23, 5123-5130(2013).
[70] FU C G, LIU Y T, YU J J et al. Unique role of refractory ta alloying in enhancing the figure of merit of NbFeSb thermoelectric materials[D]. Advanced Energy Materials, 8, 1701313-1-8(2018).
[71] ANAND S, LIU Y T, XIA K Y et al. Enhanced thermoelectric performance in 18-electron Nb0.8CoSb half-heusler compound with intrinsic Nb vacancies[D]. Advanced Functional Materials, 28, 1705845-1-7(2018).
[72] LI W, LIN S Q, ZHANG X Y et al. Thermoelectric properties of Cu2SnSe4 with intrinsic vacancy[D]. Chemistry of Materials, 28, 6227-6232(2016).
[73] KLEMENS P G. The scattering of low-frequency lattice waves by static imperfections. Proceedings of the Physical Society[C]. Section A, 68, 1113-1128(1955).
[74] HE J, JI X H, ZHANG S N et al. Effects of ball-milling atmosphere on the thermoelectric properties of TAGS-85 compounds[D]. Journal of Electronic Materials, 38, 1142-1147(2009).
[75] LI Y, MEI D Q, WANG H et al. Reduced lattice thermal conductivity in nanograined Na-doped PbTe alloys by ball milling and semisolid powder processing[D]. Materials Letters, 140, 103-106(2015).
[76] CHEN Z G, HONG M, ZOU J. Fundamental and progress of Bi2Te3-based thermoelectric materials[D]. Chinese Physics B, 27, 048403-1-46(2018).
[77] ICHIKAWA S, OHISHI Y, XIE J et al. Naturally decorated dislocations capable of enhancing multiple-phonon scattering in Si-based thermoelectric composites[D]. Journal of Applied Physics, 123, 115114-1-8(2018).
[78] HE D S, YU Y, ZHANG S Y et al. Simultaneous optimization of electrical and thermal transport properties of Bi0.5Sb1.5Te3 thermoelectric alloy by twin boundary engineering[D]. Nano Energy, 37, 203-213(2017).
[79] HE J, KANG H J, XIE W J et al. Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi,Sb)2Te3 nanocomposites[D]. Nano Letters, 10, 3283-3289(2010).
[80] REN D D, WU J H, YANG X Y et al. Microstructure and thermoelectric properties of p-type Si80Ge20B0.6-SiC nanocomposite[D]. Journal of Inorganic Materials, 31, 997-1003(2016).
[81] FU C G, XIE H H, YU C et al. High performance half-Heusler thermoelectric materials with refined grains and nanoscale precipitates[D]. Journal of Materials Research, 27, 2457-2465(2012).
[82] HU L P, WU H J, ZHU T J et al. Tuning multiscale microstructures to enhance thermoelectric performance of n-type bismuth-telluride-based solid solutions[D]. Advanced Energy Materials, 5, 1500411-1-13(2015).
[83] GIRARD S N, HE J Q, KANATZIDIS M G et al. Microstructure-lattice thermal conductivity correlation in nanostructured PbTe0.7S0.3 thermoelectric materials[D]. Advanced Functional Materials, 20, 764-772(2010).
[84] LIU X H, WU H J, XIN J Z et al. Mg vacancy and dislocation strains as strong phonon scatterers in Mg2Si1-xSbx thermoelectric materials[D]. Nano Energy, 34, 428-436(2017).
[85] BAI S Q, SHI X, XI L L et al. Realization of high thermoelectric performance in n-type partially filled skutterudites[D]. Journal of Materials Research, 26, 1745-1754(2011).
[86] KEPPENS V, MANDRUS D, SALES B C et al. Localized vibrational modes in metallic solids[D]. Nature, 395, 876-878(1998).
[87] DUAN B, SALVADOR J R, YANG J et al. Electronegative guests in CoSb3[D]. Energy & Environmental Science, 9, 2090-2098(2016).
[88] PAL K, PAL P, SAMANTA M et al. Localized vibrations of bi bilayer leading to ultralow lattice thermal conductivity and high thermoelectric performance in weak topological insulator n-type BiSe[D]. Journal of the American Chemical Society, 140, 5866-5872(2018).
[89] HU S, UHER C, YANG J et al. Transport properties of pure and doped MNiSn (M=Zr, Hf)[D]. Physical Review B, 59, 8615-8621(1999).
[90] LI J F, LIU W S, ZHAO L D et al. High-performance nanostructured thermoelectric materials[D]. NPG Asia Materials, 2, 152-158(2010).
[91] FANG T, ZHAO X B, ZHU T J. Band Structures and transport properties of high-performance half-heusler thermoelectric materials by first principles[D]. Materials, 11, 847(2018).
[92] LI X S, TANG Y L. MARTIN L H J, et al. Impact of Ni content on the thermoelectric properties of half-Heusler TiNiSn[D]. Energy & Environmental Science, 11, 311-320(2018).
[93] XU J, YU G T, ZHU T J et al. The role of electron-phonon interaction in heavily doped fine-grained bulk silicons as thermoelectric materials[D]. Advanced Electronic Materials, 2, 1600171(2016).
[94] ABELES B. Lattice thermal conductivity of disordered semiconductor alloys at high temperatures[D]. Physical Review, 131, 1906-1911(1963).
[95] CLARKE D R. Materials selection guidelines for low thermal conductivity thermal barrier coatings[D]. Surface and Coatings Technology, 163, 67-74(2003).
[96] CAHILL D G, POHL R O. Heat flow and lattice vibrations in glasses[D]. Solid State Communications, 70, 927-930(1989).
[97] CAHILL D G, POHL R O, WATSON S K. Lower limit to the thermal conductivity of disordered crystals[D]. Physical Review B, 46, 6131-6140(1992).
[98] ALLEN P B, DU X Q, MIHALY L et al. Thermal conductiity of insulating Bi2Sr2YCu2O8 and superconducting Bi2Sr2CaCu2O8: failure of the phonon-gas picture[D]. Physical Rview B, 49, 9073-9079(1994).
[99] ALLEN P B, BICKHAM S R, FELDMAN J L. Numerical study of low-frequency vibrations in amorphous silicon[D]. Physical Review B, 59, 3551-3559(1999).
[100] AGNE M T, HANUS R, SNYDER G J. Minimum thermal conductivity in the context of diffuson-mediated thermal transport[D]. Energy & Environmental Science, 11, 609-616(2018).
[101] POHL R O. Lattice vibrations of glasses. Journal of[D]. Non-Crystalline Solids, 352, 3363-3367(2006).
[102] FU C G, LIU Y T, ZHU T J et al. Band engineering of high performance p-type FeNbSb based half-Heusler thermoelectric materials for figure of merit zT>1[D]. Energy & Environmental Science, 8, 216-220(2015).
[103] GUO L, WEI P, YANG J et al. Minimum thermal conductivity in weak topological insulators with bismuth-based stack structure[D]. Advanced Functional Materials, 26, 5360-5367(2016).
[104] ISAEVA A, RASCHE B, RUCK M et al. Stacked topological insulator built from bismuth-based graphene sheet analogues[D]. Nature Materials, 12, 422-425(2013).
[105] KOEPERNIK K, PAULY C, RASCHE B et al. Subnanometre-wide electron channels protected by topology[D]. Nature Physics, 11, 338-343(2015).
Get Citation
Copy Citation Text
Jia-Jun SHEN, Teng FANG, Tie-Zheng FU, Jia-Zhan XIN, Xin-Bing ZHAO, Tie-Jun ZHU, [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Lattice Thermal Conductivity in Thermoelectric Materials[J]. Journal of Inorganic Materials, 2019, 34(3): 260
Category: Research Articles
Received: Jul. 16, 2018
Accepted: --
Published Online: Sep. 26, 2021
The Author Email: