Chinese Journal of Lasers, Volume. 51, Issue 5, 0510004(2024)

Pavement Pothole Detection Method Based on Vehicle-Borne Laser Point Clouds

Xinjiang Ma1, Dongjie Yue1、*, Yueqian Shen1, Rufei Liu2, Minye Wang2, Jiayong Yu3、**, and Chunyang Zhang4
Author Affiliations
  • 1School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, Jiangsu, China
  • 2College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
  • 3School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, Anhui, China
  • 4Qingdao Xiushan Mobile Surveying Co., Ltd., Qingdao 266590, Shandong, China
  • show less
    References(36)

    [1] Xu P, Zhu X, Yao D et al. Review on intelligent detection and decision-making of asphalt pavement maintenance[J]. Journal of Central South University (Science and Technology), 52, 2099-2117(2021).

    [2] Eriksson J, Girod L, Hull B et al. The pothole patrol: using a mobile sensor network for road surface monitoring[C], 29-39(2008).

    [3] Mednis A, Strazdins G, Zviedris R et al. Real time pothole detection using Android smartphones with accelerometers[C](2011).

    [4] Madli R, Hebbar S, Pattar P et al. Automatic detection and notification of potholes and humps on roads to aid drivers[J]. IEEE Sensors Journal, 15, 4313-4318(2015).

    [5] Tang L, Zhao C X, Wang H N et al. Fusion of multiple basic PDE models for enhancing road surface images[J]. Journal of Image and Graphics, 13, 1661-1666(2008).

    [6] Shen Y, Dang J W, Wang Y P et al. A compressed sensing pavement distress image filtering algorithm based on NSCT domain[J]. Journal of Optoelectronics·Laser, 25, 1620-1626(2014).

    [7] Xu Z G, Che Y L, Min H G, de Pietro G, Gallo L, Howlett R J et al. Initial classification algorithm for pavement distress images using features fusion[M]. Intelligent interactive multimedia systems and services, 98, 418-427(2019).

    [8] Ryu S K, Kim T, Kim Y R. Image-based pothole detection system for ITS service and road management system[J]. Mathematical Problems in Engineering, 2015, 968361(2015).

    [9] Wu L L, Mokhtari S, Nazef A et al. Improvement of crack-detection accuracy using a novel crack defragmentation technique in image-based road assessment[J]. Journal of Computing in Civil Engineering, 30, 451(2016).

    [10] Sha A M, Tong Z, Gao J. Recognition and measurement of pavement disasters based on convolutional neural networks[J]. China Journal of Highway and Transport, 31, 1-10(2018).

    [11] Fan R, Wang H L, Wang Y et al. Graph attention layer evolves semantic segmentation for road pothole detection: a benchmark and algorithms[J]. IEEE Transactions on Image Processing, 30, 8144-8154(2021).

    [12] Guan J C, Yang X, Ding L et al. Automated pixel-level pavement distress detection based on stereo vision and deep learning[J]. Automation in Construction, 129, 103788(2021).

    [13] Hui B, Guo M, Wang Z et al. Multi-dimensional index detection of potholes based on 3D laser technology[J]. Journal of Tongji University (Natural Science), 46, 60-66(2018).

    [14] Li F, Ablat G, Zhou S Q et al. 2D-wavelet based micro and macro texture analysis for asphalt pavement under snow or ice condition[J]. Journal of Infrastructure Preservation and Resilience, 2, 1-15(2021).

    [15] Fan R, Ozgunalp U, Hosking B et al. Pothole detection based on disparity transformation and road surface modeling[J]. IEEE Transactions on Image Processing, 29, 897-908(2020).

    [16] Du Y, Zhou Z F, Wu Q Q et al. A pothole detection method based on 3D point cloud segmentation[J]. Proceedings of SPIE, 11519, 1151909(2020).

    [17] Tan Y M, Li Y X. UAV photogrammetry-based 3D road distress detection[J]. ISPRS International Journal of Geo-Information, 8, 409(2019).

    [18] Ahmed A, Ashfaque M, Ulhaq M U et al. Pothole 3D reconstruction with a novel imaging system and structure from motion techniques[J]. IEEE Transactions on Intelligent Transportation Systems, 23, 4685-4694(2022).

    [19] Biçici S, Zeybek M. An approach for the automated extraction of road surface distress from a UAV-derived point cloud[J]. Automation in Construction, 122, 103475(2021).

    [20] Xu M B, Han Y M, Wang L Z et al. Research on high-precision manhole cover extraction and settlement disease detection method based on laser point cloud[J]. Chinese Journal of Lasers, 48, 1604001(2021).

    [21] Pan N, Du Y C, Yue J S et al. Automatic detection method of pavement deformation distress based on point cloud data[J]. Journal of Tongji University (Natural Science), 50, 399-408(2022).

    [22] Mizutani T, Yamaguchi T, Kudo T et al. Quantitative evaluation of peeling and delamination on infrastructure surfaces by laser signal and image processing of 3D point cloud data[J]. Automation in Construction, 133, 104023(2022).

    [23] Liao F Q, Ma R G, Wang D et al. Road pothole extraction method based on RANSAC[J]. Computer Systems and Applications, 31, 230-237(2022).

    [24] Sun Q, Cheng J Y, Tian S H et al. Retrieval of asphalt road pavement distress using multi-scale features extracted from unmanned aerial vehicle LIDAR data[J]. Journal of Shihezi University (Natural Science), 37, 1-11(2019).

    [25] de Blasiis M R, Di Benedetto A, Fiani M. Mobile laser scanning data for the evaluation of pavement surface distress[J]. Remote Sensing, 12, 942(2020).

    [26] Ravi R, Habib A, Bullock D. Pothole mapping and patching quantity estimates using LiDAR-based mobile mapping systems[J]. Transportation Research Record, 2674, 124-134(2020).

    [27] Chen X L, Ma R G, Liang H T et al. Extraction of pavement potholes based on normal vector distance[J]. Computer Systems and Applications, 31, 222-229(2022).

    [29] Liu R F, Lu X S, Yue G W et al. An automatic extraction method of road from vehicle-borne laser scanning point clouds[J]. Geomatics and Information Science of Wuhan University, 42, 250-256(2017).

    [30] Yao L B, Qin C C, Zhang S H et al. Road marking extraction and semantic correlation based on vehicle-borne laser point cloud[J]. Acta Geodaetica et Cartographica Sinica, 49, 480-488(2020).

    [31] Li W G, Fan X, Mei Y et al. Road marking extraction method based on vehicle laser point cloud[J]. Chinese Journal of Lasers, 49, 0710001(2022).

    [32] Zhang W M, Qi J B, Wan P et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing, 8, 501(2016).

    [33] Demantké J, Vallet B, Paparoditis N. Streamed vertical rectangle detection in terrestrial laser scans for facade database production[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, I-3, 99-104(2012).

    [34] Guinard S, Landrieu L. Weakly supervised segmentation-aided classification of urban scenes from 3D lidar point clouds[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-1/W1, 151-157(2017).

    [35] Fischler M A, Bolles R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 24, 381-395(1981).

    [36] Torr P H S, Zisserman A. MLESAC: a new robust estimator with application to estimating image geometry[J]. Computer Vision and Image Understanding, 78, 138-156(2000).

    [38] Vallet B, Brédif M, Serna A et al. TerraMobilita/iQmulus urban point cloud analysis benchmark[J]. Computers & Graphics, 49, 126-133(2015).

    Tools

    Get Citation

    Copy Citation Text

    Xinjiang Ma, Dongjie Yue, Yueqian Shen, Rufei Liu, Minye Wang, Jiayong Yu, Chunyang Zhang. Pavement Pothole Detection Method Based on Vehicle-Borne Laser Point Clouds[J]. Chinese Journal of Lasers, 2024, 51(5): 0510004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: remote sensing and sensor

    Received: Jul. 7, 2023

    Accepted: Aug. 11, 2023

    Published Online: Mar. 1, 2024

    The Author Email: Dongjie Yue (yuedongjie@163.com), Jiayong Yu (yujiayongskd@163.com)

    DOI:10.3788/CJL231000

    CSTR:32183.14.CJL231000

    Topics