Laser & Optoelectronics Progress, Volume. 62, Issue 6, 0637003(2025)

Face-Image Inpainting Network Based on Multilayer Progressive Guidance

Yaling Ju1、*, Xiucheng Dong1,2, Bing Hou1, Jinqing He1, and Xiao Yong1
Author Affiliations
  • 1School of Electrical Engineering and Electronic Information, Xihua University, Chengdu 610039, Sichuan , China
  • 2School of Electrical and Electronic Information Engineering, Sichuan University Jinjiang College, Meishan 620860, Sichuan , China
  • show less
    Figures & Tables(17)
    Structure of multi-layer progressive guidance network model
    Structure of discriminator module
    Structure of feature extraction module
    Structure of FEAM module
    Structure of CAM
    Examples of different mask types and face-images. (a1)‒(a3) Mask images with missing region ratio of (0, 0.2]、(0.2, 0.4]、(0.4, 0.6]; (b1)‒(b3) face images in the CelebA-HQ dataset; (c1)‒(c3) face-images in the profile dataset
    Training process of the profile dataset
    Inpainting results of images with different mask rates in the CelebA-HQ dataset by different models. (a) Mask images; (b) EC[16]; (c) SF[17]; (d) PGD-Net[15]; (e) PDGG-Net[32]; (f) proposed model; (g) real images
    Inpainting results by different fine-tuning methods on the profile dataset. (a) Mask images; (b) directly load pre-training weights of CelebA-HQ dataset; (c) train directly with the profile dataset; (d) multi-dataset joint training and fine-tuning; (e) real images
    Inpainting results by different models on the profile dataset. (a) Mask images; (b) PGD-Net[15]; (c) PDGG-Net[32]; (d) proposed model; (e) real images
    Inpainting results of ablation experiments on the CelebA-HQ dataset. (a) Mask images; (b) without FEAM module; (c) without structural branch; (d) without texture branch; (e) proposed model; (f) real images
    Inpainting results of ablation experiments for the CAM on CelebA-HQ dataset. (a) Mask images; (b) without CAM; (c) without the FEAM module in CAM; (d) proposed model; (e) real images
    • Table 1. Quantitative comparison results of different models on the CelebA-HQ dataset

      View table

      Table 1. Quantitative comparison results of different models on the CelebA-HQ dataset

      ModelSSIMPSNR /dBMAE
      (0, 0.2](0.2, 0.4](0.4, 0.6]Average(0, 0.2](0.2, 0.4](0.4, 0.6]Average(0, 0.2](0.2, 0.4](0.4, 0.6]Average
      EC0.9850.9440.8420.92434.8527.7922.7228.450.00910.02310.04310.0251
      SF0.9830.9410.8430.92234.0527.4222.8128.090.00950.02240.04230.0247
      PGD-Net0.9850.9490.8690.93434.5428.1423.6128.760.00810.01990.04040.0228
      PDGG-Net0.9850.9490.8670.93434.8528.2223.6628.910.00800.02010.04110.0231
      Proposed0.9870.9520.8710.93735.0728.3923.6729.040.00760.01910.04000.0222
    • Table 2. Quantitative comparison results of different fine-tuning methods on the profile dataset

      View table

      Table 2. Quantitative comparison results of different fine-tuning methods on the profile dataset

      TestSSIMPSNR /dBMAE
      Test 10.75123.350.0482
      Test 20.88426.630.0306
      Test 30.88726.920.0296
    • Table 3. Quantitative comparison results of different models on the profile dataset

      View table

      Table 3. Quantitative comparison results of different models on the profile dataset

      ModelSSIMPSNR /dBMAE
      PGD-Net150.87425.950.0330
      PDGG-Net320.88626.800.0300
      Proposed0.88726.920.0296
    • Table 4. Ablation experimenatal results on the CelebA-HQ dataset

      View table

      Table 4. Ablation experimenatal results on the CelebA-HQ dataset

      ModelSSIMPSNR /dBMAE
      wFEAM0.89825.660.0316
      wStructure0.89425.500.0326
      wTexture0.89425.380.0328
      wCAM0.89825.660.0316
      CAM-wFEAM0.89825.630.0316
      Proposed0.89925.670.0315
    • Table 5. Quantitative comparison results of different style loss weights on the CelebA-HQ dataset

      View table

      Table 5. Quantitative comparison results of different style loss weights on the CelebA-HQ dataset

      Style loss weightSSIMPSNR /dBMAE
      2000.89825.630.0316
      2500.89925.670.0315
      3000.89425.500.0326
    Tools

    Get Citation

    Copy Citation Text

    Yaling Ju, Xiucheng Dong, Bing Hou, Jinqing He, Xiao Yong. Face-Image Inpainting Network Based on Multilayer Progressive Guidance[J]. Laser & Optoelectronics Progress, 2025, 62(6): 0637003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: May. 20, 2024

    Accepted: Aug. 1, 2024

    Published Online: Mar. 5, 2025

    The Author Email:

    DOI:10.3788/LOP241334

    CSTR:32186.14.LOP241334

    Topics