Acta Laser Biology Sinica, Volume. 28, Issue 3, 193(2019)
Lens-free Microscopy
[1] [1] MCLEOD E, OZCAN A. Microscopy without lenses[J]. Physics Today, 2017, 70(9): 50-56.
[2] [2] MCLEOD E, OZCAN A. Unconventional methods of imaging: computational microscopy and compact implementations[J]. Reports on Progress in Physics, 2016, 79(7): 076001.
[3] [3] LANGE D, STORMENT C W, CONLEY C A, et al. A microfluidic shadow imaging system for the study of the nematode Caenorhabditis elegans in space[J]. Sensors & Actuators B Chemical, 2005, 107(2): 904-914.
[4] [4] CUI X, LEE L M, HENG X, et al. Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(31): 10670-10675.
[5] [5] SEO S, SU T W, TSENG D K, et al. Lensfree holographic imaging for on-chip cytometry and diagnostics[J]. Lab on A Chip, 2009, 9(6): 777-787.
[6] [6] LEE S A, LEITAO R, ZHENG G, et al. Color capable sub-pixel resolving optofluidic microscope and its application to blood cell imaging for malaria diagnosis[J]. Plos One, 2011, 6(10): e26127.
[7] [7] OZCAN A, DEMIRCI U. Ultra wide-field lens-free monitoring of cells on-chip[J]. Lab on A Chip, 2007, 8(1): 98-106.
[8] [8] COSKUN A F, SU T W, OZCAN A. Wide field-of-view lens-free fluorescent imaging on a chip[J]. Lab on A Chip, 2010, 10(7): 824-827.
[9] [9] MARTINELLI L, CHOUMANE H, HA K N, et al. Sensor-integrated fluorescent microarray for ultrahigh sensitivity direct-imaging bioassays:role of a high rejection of excitation light[J]. Applied Physics Letters, 2007, 91(8): 083901.
[10] [10] LEE S A, OU X, LEE J E, et al. Chip-scale fluorescence microscope based on a silo-filter complementary metal-oxide semiconductor image sensor[J]. Optics Letters, 2013, 38(11): 1817-1819.
[11] [11] COSKUN A F, SENCAN I, SU T W, et al. Wide-field lensless fluorescent microscopy using a tapered fiber-optic faceplate on a chip[J]. Analyst, 2011, 136(17): 3512-3518.
[12] [12] KHADEMHOSSEINIEH B, SENCAN I, BIENER G, et al. Lensfree on-chip imaging using nanostructured surfaces[J]. Applied Physics Letters, 2010, 96(17): 171106.
[13] [13] COSKUN A F, IKBAL S, TING-WEI S, et al. Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects[J]. Optics Express, 2010, 18(10): 10510-10523.
[14] [14] ALLIER C P, KESAVAN S V, COUTARD J G, et al. Video lensfree microscopy of 2D and 3D culture of cells[C]. Imaging, Manipulation, & Analysis of Biomolecules, Cells, & Tissues XII. International Society for Optics and Photonics, 2014: 89471H.
[15] [15] BISHARA W, SU T W, COSKUN A F, et al. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution[J]. Optics Express, 2010, 18(11): 11181-11191.
[16] [16] SOBIERANSKI A C, INCI F, TEKIN H C, et al. Portable lensless wide-field microscopy imaging platform based on digital inline holography and multi-frame pixel super-resolution[J]. Light Science & Applications, 2015, 4(10): e346.
[17] [17] ADACHI Y, TAMAKI T, MOTOMURA H, et al. Lensfree on-chip high-resolution imaging using two-way lighting, and its limitations[C]. Three-Dimensional and Multidimensional Microscopy:Image Acquisition and Processing XXIII International Society for Optics and Photonics, 2016: 9713W.
[18] [18] LUO W, ZHANG Y, FEIZI A, et al. Pixel super-resolution using wavelength scanning[J]. Light Science & Applications, 2016, 5(4): e16060.
[19] [19] MUDANYALI O. Lensfree holographic microscopy and wide-field optical imaging using wetting films and nano-lenses[D]. University of California, Los Angeles, 2012.
[20] [20] SONG J, SWISHER C L, IM H, et al. Sparsity-based pixel super resolution for lens-free digital in-line holography[J]. Scientific Reports, 2016, 6(1): 24681.
[21] [21] ZHANG W, CAO L, BRADY D J, et al. Twin-image-free holography:a Compressive sensing approach[J]. Physical Review Letters, 2018, 121(9): 093902.
[22] [22] FIENUP J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 1982, 21(15): 2758-2769.
[23] [23] GREENBAUM A, OZCAN A. Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy[J]. Optics Express, 2012, 20(3): 3129-3143.
[24] [24] LUO W, GRCS Z, ZHANG Y, et al. Wavelength scanning achieves pixel super-resolution in holographic on-chip microscopy[C]. Optics and Biophotonics in Low-resource Settings II. International Society for Optics and Photonics, 2016: 96990A.
[25] [25] ZHANG Y, LEE S Y, ZHANG Y, et al. Wide-field imaging of birefringent synovial fluid crystals using lens-free polarized microscopy for gout diagnosis[J]. Scientific Reports, 2016, 6(1): 28793.
[26] [26] BERNET S, HARM W, JESACHER A, et al. Lensless digital holography with diffuse illumination through a pseudo-random phase mask[J]. Optics Express, 2011, 19(25): 25113-25124.
[27] [27] HUSSAIN A, LI Y, LIU D, et al. On-chip microscopy using random phase mask scheme[J]. Scientific Reports, 2017, 7(1): 14768.
[28] [28] RIVENSON Y, WU Y, WANG H, et al. Sparsity-based multi-height phase recovery in holographic microscopy[J]. Scientific Reports, 2016, 6(1): 37862.
[29] [29] GUO C, LI Q, ZHANG X, et al. Enhancing imaging contrast via weighted feedback for iterative multi-image phase retrieval[J]. Journal of Biomedical Optics, 2018, 23(1): 016015.
[30] [30] GUO C, ZHAO Y, TAN J, et al. Multi-distance phase retrieval with a weighted shrink-wrap constraint[J]. Optics and Lasers in Engineering, 2019, 113(1): 1-5.
[31] [31] ZHANG J, SUN J, CHEN Q, et al. Adaptive pixel-super-resolved lensfree in-line digital holography for wide-field on-chip microscopy[J]. Scientific Reports, 2017, 7(1): 11777.
[32] [32] HAEFFELE B D, ROTH S, ZHOU L, et al. Removal of the twin image artifact in holographic lens-free imaging by sparse dictionary learning and coding[C]. 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017),IEEE, 2017: 741-744.
[33] [33] GUO C, SHEN C, LI Q, et al. A fast-converging iterative method based on weighted feedback for multi-distance phase retrieval[J]. Scientific Reports, 2018, 8(1): 6436.
[34] [34] LUO W, ZHANG Y, GRCS Z, et al. Propagation phasor approach for holographic image reconstruction[J]. Scientific Reports, 2016, 6(1): 22738.
[35] [35] CUCHE E, MARQUET P, DEPEURSINGE C. Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms[J]. Applied Optics, 1999, 38(34): 6994-7001.
[36] [36] RIVENSON Y, LIU T, WEI Z, et al. PhaseStain:digital staining of label-free quantitative phase microscopy images using deep learning[J]. Light:Science & Applications, 2018, 8(1): 23.
[37] [37] RIVENSON Y, ZHANG Y, GüNAYDIN H, et al. Phase recovery and holographic image reconstruction using deep learning in neural networks[J]. Light: Science & Applications, 2017, 7(2): 17141.
[38] [38] WU Y, RIVENSON Y, ZHANG Y, et al. Deep neural network-based phase-recovery and auto-focusing extend the depth-of-Field in digital holography[C].Digital Holography and Three-dimensional Imaging, 2018.
[39] [39] WANG H, RIVENSON Y, JIN Y, et al. Deep learning enables cross-modality super-resolution in fluorescence microscopy[J]. Nature Methods, 2019, 16: 103-110.
[40] [40] GRCS Z, TAMAMITSU M, BIANCO V, et al. A deep learning-enabled portable imaging flow cytometer for cost-effective, high-throughput, and label-free analysis of natural water samples[J]. Light: Science & Applications, 2018, 7(1): 66.
[41] [41] MUDANYALI O, MCLEOD E, LUO W, et al. Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses[J]. Nature Photonics, 2013, 7(3): 247-254.
[42] [42] ALLIER C P, HIERNARD G, POHER V, et al. Bacteria detection with thin wetting film lensless imaging[J]. Biomedical Optics Express, 2010, 1(3): 762-770.
[43] [43] MCLEOD E, NGUYEN C, HUANG P, et al. Tunable vapor-condensed nanolenses[J]. American Chemical Society Nano, 2014, 8(7): 7340-7349.
[44] [44] HENNEQUIN Y, ALLIER C P, MCLEOD E, et al. Optical detection and sizing of single nanoparticles using continuous wetting films[J]. American Chemical Society Nano, 2013, 7(9): 7601-7609.
[45] [45] SU T W, XUE L, OZCAN A. High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories[J]. Proceeding of the National Academy of Sciences, 2012, 109(40): 16018-16022.
[46] [46] ISIKMAN S O, BISHARA W, MAVANDADI S, et al. Lens-free optical tomographic microscope with a large imaging volume on a chip[J]. Proceedings of the National Academy of Science, 2011, 108(18): 7296-7301.
[47] [47] BERDEU A, MOMEY F, LAPERROUSAZ B, et al. Comparative study of fully three-dimensional reconstruction algorithms for lens-free microscopy[J]. Applied Optics, 2017, 56(13): 3939-3951.
[48] [48] BERDEU A, ALLIER C, MOMEY F, et al. Lensfree diffractive tomography for the imaging of 3D cell cultures[J]. Biomedical Optics Express, 2015, 7(3): 949-962.
[49] [49] WOLF E. Three-dimensional structure determination of semi-transparent objects from holographic data[J]. Optics Communications, 1969, 1(4): 153-156.
[50] [50] NOCEDAL J. Updating quasi-newton matrices with limited storage[J]. Mathematics of Computation, 1980, 35(151): 773-782.
[51] [51] GRCS Z, ORZó L, KISS M, et al. In-line color digital holographic microscope for water quality measurements[C]. Proceedings of SPIE-International Society for Optics and Photonics. 2010: 737614.
[52] [52] GREENBAUM A, FEIZI A, AKBARI N, et al. Wide-field computational color imaging using pixel super-resolved on-chip microscopy[J]. Optics Express, 2013, 21(10): 12469-12483.
[53] [53] DIJKSTRA E W. A note on two problems in connexion with graphs[M]. Springer-Verlag New York, Secaucus, NJ, USA, 1959.
[54] [54] ZHANG Y, WU Y, ZHANG Y, et al. Color calibration and fusion of lens-free and mobile-phone microscopy images for high-resolution and accurate color reproduction[J]. Scientific Reports, 2016, 6(1): 27811.
[55] [55] WEI Q, MCLEOD E, QI H, et al. On-chip cytometry using plasmonic nanoparticle enhanced lensfree holography[J]. Scientific Reports, 2013, 3(1): 1699.
[56] [56] COLLE F, VERCRUYSSE D, PEETERS S, et al. Lens-free imaging of magnetic particles in DNA assays[J]. Lab on A Chip, 2013, 13(21): 4257-4262.
[57] [57] KHADEMHOSSEINIEH B, BIENER G, SENCAN I, et al. Lensfree sensing on a microfluidic chip using plasmonic nanoapertures[J]. Applied Physics Letters, 2010, 97(22): 221107.
[58] [58] COSKUN A F, CETIN A E, GALARRETA B C, et al. Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view[J]. Scientific Reports, 2014, 4(1): 6789.
[59] [59] CETIN A E, IYIDOGAN P, HAYASHI Y, et al. Plasmonic sensor could enable label-free DNA sequencing[J]. ACS sensors, 2018, 3(3): 561-568.
[60] [60] SAEKI T, HOSOKAWA M, LIM T K, et al. Digital cell counting device integrated with a single-cell array[J]. Plos One, 2013, 9(2): e89011.
[61] [61] STYBAYEVA G, MUDANYALI O, SEO S, et al. Lensfree holographic imaging of antibody microarrays for high-throughput detection of leukocyte numbers and function[J]. Analytical Chemistry, 2010, 82(9): 3736-4374.
[62] [62] MUSAYEV J, ALTINER C, ADIGUZEL Y, et al. Capturing and detection of MCF-7 breast cancer cells with a CMOS image sensor[J]. Sensors & Actuators A Physical, 2014, 215(16): 105-114.
[63] [63] HUANG K W, SU T W, OZCAN A, et al. Optoelectronic tweezers integrated with lensfree holographic microscopy for wide-field interactive cell and particle manipulation on a chip[J]. Lab on A Chip, 2013, 13(12): 2278-2284.
Get Citation
Copy Citation Text
XU Xinzhu, GUAN Meiling, JIANG Shan, YANG Houpu, WANG Shu, XI Peng. Lens-free Microscopy[J]. Acta Laser Biology Sinica, 2019, 28(3): 193
Category:
Received: Mar. 18, 2019
Accepted: --
Published Online: Aug. 7, 2019
The Author Email: