Acta Optica Sinica, Volume. 44, Issue 7, 0715001(2024)

Cross-Modal Optical Information Interaction and Template Dynamic Update for RGBT Target Tracking Method

Jianming Chen1,2, Dingjian Li1, Xiangjin Zeng1,2, Zhenbo Ren3, Jianglei Di1、*, and Yuwen Qin1,2、**
Author Affiliations
  • 1Key Laboratory of Photonic Technology for Integrated Sensing and Communication, Ministry of Education, Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Information Engineering of Guangdong University of Technology, Institute of Advanced Photonics Technology, Guangzhou 510006, Guangdong , China
  • 2Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, Guangdong , China
  • 3Key Laboratory of Light-Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, Shaanxi Key Laboratory of Photonics Technology for Information, School of Physical Science and Technology, Northwestern Polytechnical University, Xi an 710129, Shaanxi , China
  • show less
    Figures & Tables(14)
    Overall network structure of SiamCTU
    Model structure of target tracking method based on Siamese network
    Residual structure of ResNet
    Schematic diagram of cross correlation operations
    Structure diagram of feature interaction module
    Comparison of SiamCTU with 10 advanced trackers on GTOT dataset. (a) PR; (b) SR
    Comparison of SiamCTU with 10 advanced trackers on RGBT234 dataset. (a) PR; (b) SR
    Experimental results on RGBT234 dataset based on 12 challenge attributes. (a1)(a2) Background clutter; (b1)(b2) camera moving; (c1)(c2) deformation; (d1)(d2) fast moving; (e1)(e2) heavy occlution; (f1)(f2) low illumination; (g1)(g2) low resolution; (h1)(h2) motion blur; (i1)(i2) no occlution; (j1)(j2) partial occlution; (k1)(k2) scale variation; (l1)(l2) thermal crossover
    Comparison of SiamCTU with 7 advanced trackers on LasHeR dataset. (a) PR; (b) SR
    Visual tracking comparison results on GTOT and RGBT234 datasets. (a) LightOcc sequences; (b) cycling sequences; (c) night2 sequences; (d) baketballwaliking sequences
    • Table 1. PR and SR of the SiamCTU compared with the 10 most advanced target trackers based on challenge attributes in the GTOT dataset (represented by PR/SR)

      View table

      Table 1. PR and SR of the SiamCTU compared with the 10 most advanced target trackers based on challenge attributes in the GTOT dataset (represented by PR/SR)

      Publisher informationTrackersOCCLSVFMLITCSODEFAll
      ECCV 2020CAT1689.9/69.285.0/67.983.9/65.489.2/72.389.9/71.094.7/69.992.5/75.588.9/71.7
      IEEE TIV 2020FANet3186.4/70.381.6/68.280.1/65.389.9/73.590.4/72.394.3/70.894.6/77.689.1/72.8
      CVPR 2020CMPP3094.7/71.791.2/69.991.7/68.692.4/74.393.8/72.998.0/72.594.6/78.892.6/73.8
      IJCV 2021ADRNet3288.5/69.686.1/70.683.4/67.192.2/75.991.1/73.694.7/72.194.5/77.590.4/73.9
      IEEE TIP 2022M5L3387.1/66.691.0/70.289.4/68.591.7/73.089.2/69.596.0/70.292.2/74.689.6/71.0
      AAAI 2022APFNet1790.3/71.387.7/71.286.5/68.491.4/74.890.4/71.694.3/71.394.6/78.090.5/73.7
      IEEE TCSVT 2022SiamCDA1982.2/69.491.5/74.886.6/72.092.4/76.482.6/68.587.4/69.187.9/72.787.7/73.2
      CVPR 2022HMFT1388.5/72.089.3/75.285.8/74.194.6/76.789.6/73.092.8/71.394.4/74.791.3/74.9
      IEEE TITS 2023DFNet3488.7/68.984.2/69.781.4/64.489.6/73.388.6/71.594.3/71.392.8/74.888.1/71.9
      Inf Fusion 2023DFAT3586.3/68.792.4/75.089.1/74.092.2/74.189.1/70.794.4/71.991.9/73.589.3/72.3
      Our91.5/72.194.2/75.990.2/73.395.8/76.692.7/74.092.8/71.794.1/74.894.0/75.6
    • Table 2. Experimental results of tracking efficiency comparison based on GTOT dataset

      View table

      Table 2. Experimental results of tracking efficiency comparison based on GTOT dataset

      MetricCMPPAPFNetSiamCDACATM5LOurs
      FPS1.31.437.020.09.730.0
      PR/SR92.6/73.890.5/73.787.7/73.288.9/71.789.6/71.094.0/75.6
    • Table 3. Results of ablation experiments on 3 baseline datasets (PR/SR)

      View table

      Table 3. Results of ablation experiments on 3 baseline datasets (PR/SR)

      MethodGTOTRGBT234LasHeR
      Baseline88.2/72.675.3/53.954.8/42.6
      Baseline+CB90.7/72.475.4/54.155.4/43.5
      Baseline+CB+FIM91.8/74.778.5/56.657.2/44.6
      Baseline+CB+TU91.9/73.176.1/54.057.1/44.4
      Baseline+CB+FIM+TU(ours)94.0/75.679.2/57.158.5/46.0
    • Table 4. Experimental results of updating weights with different templates on GTOT dataset

      View table

      Table 4. Experimental results of updating weights with different templates on GTOT dataset

      Metricλ=0λ=0.5λ=0.6λ=0.7λ=0.8λ=0.9λ=1
      PR/SR71.0/58.286.9/72.691.2/73.694.0/75.691.7/74.691.8/74.591.8/74.7
    Tools

    Get Citation

    Copy Citation Text

    Jianming Chen, Dingjian Li, Xiangjin Zeng, Zhenbo Ren, Jianglei Di, Yuwen Qin. Cross-Modal Optical Information Interaction and Template Dynamic Update for RGBT Target Tracking Method[J]. Acta Optica Sinica, 2024, 44(7): 0715001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Dec. 11, 2023

    Accepted: Jan. 25, 2024

    Published Online: Apr. 11, 2024

    The Author Email: Di Jianglei (jiangleidi@gdut.edu.cn), Qin Yuwen (qinyw@gdut.edu.cn)

    DOI:10.3788/AOS231907

    CSTR:32393.14.AOS231907

    Topics