Journal of the Chinese Ceramic Society, Volume. 50, Issue 6, 1489(2022)

Preparation and Microwave Absorption Properties of (Fe, Co, Ni, Cu, Zn)CrxOy High-Entropy Multiphase Ceramics

LI Depeng1、*, YAN Zhikai1, ZHAO Biao1, GUAN Li1, FAN Bingbing2, WANG Hailong2, and ZHANG Rui1,2,3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(35)

    [1] [1] XIANG Huimin, XING Yan, DAI Fuzhi, et al. High-entropy ceramics:present status, challenges, and a look forward[J]. J Adv Ceram, 2021,10(3): 385-441.

    [6] [6] CAO Wenping, LI Weili, XU Dan, et al. Enhanced electrocaloric effect in lead-free NBT-based ceramics[J]. Ceram Int, 2014, 40(7):9273-9278.

    [7] [7] BAI Wangfeng, LI Lingyu, LI Wei, et al. Phase diagrams and electromechanical strains in lead-free BNT-based ternary perovskite compounds[J]. J Am Ceram Soc, 2014, 97(11): 3510-3518.

    [8] [8] ROST C M, SACHET E, BORMAN T, et al. Entropy-stabilized oxides[J]. Nat Commun, 2015, 6(1): 8485.

    [9] [9] HONG Weichen, CHEN Fei, SHEN Qiang, et al. Microstructural evolution and mechanical properties of (Mg, Co, Ni, Cu, Zn)O high-entropy ceramics[J]. J Am Ceram Soc, 2019, 102(4): 2228-2237.

    [10] [10] LI Fei, ZHOU Lin, LIU Jixuan, et al. High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials[J]. J Adv Ceram, 2019, 8(4): 576-582.

    [11] [11] YE Beilin, WEN Tongqi, HUANG Kehan, et al. First-principles study, fabrication, and characterization of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C highentropy ceramic[J]. J Am Ceram Soc, 2019, 102(7): 4344-4352.

    [12] [12] YAN Xueliang, CONSTANTIN L, LU Yongfeng, et al.(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity[J]. J Am Ceram Soc, 2018, 101(10): 4486-4491.

    [13] [13] HARRINGTON T J, GILD J, SARKER P, et al. Phase stability and mechanical properties of novel high entropy transition metal carbides[J]. Acta Mater, 2019, 166: 271-280.

    [14] [14] YE Beilin, WEN Tongqi, NGUYEN M C, et al. First-principles study,fabrication and characterization of (Zr0.25Nb0.25Ti0.25V0.25)C highentropy ceramics[J]. Acta Mater, 2019, 170: 15-23.

    [15] [15] FENG Lun, FAHRENHOLTZ W G, HILMAS G E. Low-temperature sintering of single-phase, high-entropy carbide ceramics[J]. J Am Ceram Soc, 2019, 102(12): 7217-7224.

    [16] [16] GILD J, ZHANG Yuanyao, HARRINGTON T, et al. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics[J]. Sci Rep-UK, 2016, 6(1): 37946.

    [17] [17] LIU Da, WEN Tongqi, YE Beilin, et al. Synthesis of superfine high-entropy metal diboride powders[J]. Scripta Mater, 2019, 167:110-114.

    [18] [18] CHEN Heng, ZHAO Zifan, XIANG Huimin, et al. Effect of reaction routes on the porosity and permeability of porous high entropy(Y0.2Yb0.2Sm0.2Nd0.2Eu0.2)B6 for transpiration cooling[J]. J Mater Sci Technol, 2020, 38(C): 80-85.

    [19] [19] LIU Da, LIU Honghua, NING Shanshan, et al. Synthesis of high-purity high-entropy metal diboride powders by boro/carbothermal reduction[J]. J Am Ceram Soc, 2019, 102(12): 7071-7076.

    [20] [20] D?BROWA J, STYGAR M, MIKU?A A, et al. Synthesis and microstructure of the (Co, Cr, Fe, Mn, Ni)3O4 high entropy oxide characterized by spinel structure[J]. Mater Lett, 2018, 216: 32-36.

    [21] [21] STYGAR M, D?BROWA J, MO?DZIERZ M, et al. Formation and properties of high entropy oxides in Co-Cr-Fe-Mg-Mn-Ni-O system: novel (Cr, Fe, Mg, Mn, Ni)3O4 and (Co, Cr, Fe, Mg, Mn)3O4 high entropy spinels[J]. J Eur Ceram Soc, 2020, 40(4): 1644-1650.

    [22] [22] CHEN Kepi, PEI Xintong, TANG Lei, et al. A five-component entropy-stabilized fluorite oxide[J]. J Eur Ceram Soc, 2018, 38(11):

    [23] [23] JIANG Sicong, HU Tao, GILD J, et al. A new class of high-entropy perovskite oxides[J]. Scripta Mater, 2018, 142: 116-120.

    [24] [24] D?BROWA J, STYGAR M, MIKU?A A, et al. Synthesis and microstructure of the (Co, Cr, Fe, Mn, Ni)3O4 high entropy oxide characterized by spinel structure[J]. Mater Lett, 2018, 216: 32-36.

    [26] [26] ZHANG Min, ZHANG Xiaoyan, DAS S, et al. High remanent polarization and temperature-insensitive ferroelectric remanent polarization in BiFeO3-based lead-free perovskite[J]. J Mater Chem C,2019, 7(34): 10551-10560.

    [27] [27] DONG Guixia, MA Shuwang, DU Jun, et al. Dielectric properties and energy storage density in ZnO-doped Ba0.3Sr0.7TiO3 ceramics[J].Ceram Int, 2009, 35(5): 2069-2075.

    [28] [28] JI Li, MCDANIEL M D, WANG Shijun, et al. A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst[J]. Nat Nanotechnol, 2015, 10(1):84-90.

    [29] [29] WRIGHTON M S, MORSE D L, ELLIS A B, et al. Photoassisted electrolysis of water by ultraviolet irradiation of an antimony doped stannic oxide electrode[J]. J Am Chem Soc, 1976, 98(1): 44-48.

    [32] [32] CHEN Heng, ZHAO Biao, ZHAO Zifan, et al. Achieving strong microwave absorption capability and wide absorption bandwidth through a combination of high entropy rare earth silicide carbides/rare earth oxides[J]. J Mater Sci Technol, 2020, 47: 216-222.

    [33] [33] ZHANG Weiming, ZHAO Biao, XIANG Huimin, et al. One-step synthesis and electromagnetic absorption properties of high entropy rare earth hexaborides (HE REB6) and high entropy rare earth hexaborides/borates (HE REB6/HE REBO3) composite powders[J]. J Adv Ceram, 2021, 10(1): 62-77.

    [34] [34] ZHOU Yanchun, ZHAO Biao, CHEN Heng, et al. Electromagnetic wave absorbing properties of TMCs (TM=Ti, Zr, Hf, Nb and Ta) and high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C[J]. J Mater Sci Technol, 2021,74: 105-118.

    [35] [35] WATTS J F, WOLSTENHOLME J. An Introduction to Surface Analysis by XPS and AES[M]. the United Kingdom: John Wiley & Sons Ltd, 2019: 1-18.

    [36] [36] XU Hailong, YIN Xiaowei, ZHU Meng, et al. Carbon hollow microspheres with a designable mesoporous shell for high-performance electromagnetic wave absorption[J]. ACS Appl Mater Inter, 2017, 9(7):6332-6341.

    [37] [37] LV Hualiang, JI Guangbin, LIANG Xiaohui, et al. A novel rod-like MnO2@Fe loading on graphene giving excellent electromagnetic absorption properties[J]. J Mater Chem C, 2015, 3(19): 5056-5064.

    [38] [38] ZHAO Biao, GUO Xiaoqin, ZHAO Wanyu, et al. Yolk-shell Ni@SnO2 composites with a designable interspace to improve the electromagnetic wave absorption properties[J]. ACS Appl Mater Inter,2016, 8(42): 28917-28925.

    [39] [39] SUN Yanchun, CUI Wenyu, LI Jinlong, et al. In-situ growth strategy to fabrication of MWCNTs/Fe3O4 with controllable interface polarization intensity and wide band electromagnetic absorption performance[J]. J Alloy Compd, 2019, 770: 67-75.

    [40] [40] ZHANG Cheng, LEI Chenglong, CEN Chao, et al. Interface polarization matters: enhancing supercapacitor performance of spinel NiCo2O4 nanowires by reduced graphene oxide coating[J]. Electrochim Acta, 2018, 260: 814-822.

    [41] [41] LIU Yun, CUI Tingting, WU Tong, et al. Excellent microwaveabsorbing properties of elliptical Fe3O4 nanorings made by a rapid microwave-assisted hydrothermal approach[J]. Nanotechnology, 2016,27(16): 165707.

    [42] [42] KANG Yuqing, CAO Maosheng, YUAN Jie, et al. Microwave absorption properties of multiferroic BiFeO3 nanoparticles[J]. Mater Lett, 2009, 63(15): 1344-1346.

    Tools

    Get Citation

    Copy Citation Text

    LI Depeng, YAN Zhikai, ZHAO Biao, GUAN Li, FAN Bingbing, WANG Hailong, ZHANG Rui. Preparation and Microwave Absorption Properties of (Fe, Co, Ni, Cu, Zn)CrxOy High-Entropy Multiphase Ceramics[J]. Journal of the Chinese Ceramic Society, 2022, 50(6): 1489

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Dec. 31, 2021

    Accepted: --

    Published Online: Dec. 6, 2022

    The Author Email: LI Depeng (18346027982@163.com)

    DOI:

    CSTR:32186.14.

    Topics