Laser & Optoelectronics Progress, Volume. 62, Issue 14, 1437003(2025)

LEM-YOLO-Based Lightweight Multi-Scale Detection of Forest Fire Smoke in UAV Imagery

Ruijie Kuang1, Xiang Li2、*, Yu Liu1, Bingying Hu2, and Xianshun Wang2
Author Affiliations
  • 1College of Information Engineering, East China University of Technology, Nanchang 330013, Jiangxi , China
  • 2College of Software, East China University of Technology, Fuzhou 344199, Jiangxi , China
  • show less
    Figures & Tables(15)
    Overall structure of the YOLOv8 model
    Overall structure of the LEM-YOLO model
    C2f-IStar structure diagram
    EMCFM fusion module
    LSDECD lightweight detection head
    DEConv structure diagram
    Comparison of anchor box regression processes between CIoU and PIoU
    Convergence comparison of different loss functions
    Comparison of detection results. (a1)‒(a3) Flame with drastic scale changes; (b1)‒(b3) flame obscured by smoke; (c1)‒(c3) small-target flame obscured by trees; (d1)‒(d3) smoke with indistinct features; (e1)‒(e3) smoke confused with background
    • Table 1. Experimental parameters

      View table

      Table 1. Experimental parameters

      Parameter nameParameter value
      Epoch200
      Batch size16
      OptimizerSGD
      Learning rate0.01
      Weight decay0.0005
      Momentum0.937
      Image size /(pixel×pixel)640×640
    • Table 2. Ablation experiment

      View table

      Table 2. Ablation experiment

      No.ModelAP /%mAP@0.5 /%mAP@0.5:0.95 /%Params /106FLOPs /109FPS /(frame/s)Size /MB
      FireSmoke
      0YOLOv8n85.995.790.866.23.018.168.816.3
      1+A86.797.392.068.53.158.662.596.6
      2+A+B86.597.391.968.32.707.561.315.7
      3+A+B+C87.297.292.268.62.065.961.254.8
      4+A+B+C+D88.197.292.768.72.065.957.824.8
    • Table 3. Comparative experiments of different attention mechanisms

      View table

      Table 3. Comparative experiments of different attention mechanisms

      AttentionmAP@0.5 /%mAP@0.5:0.95 /%Params /106FLOPs /109FPS /(frame/s)
      None90.866.33.058.364.45
      SE90.966.83.118.561.65
      CA91.567.93.118.459.50
      CBAM91.367.53.4510.950.83
      ECA91.367.53.128.157.15
      EMA91.868.13.158.562.59
    • Table 4. Comparative experiments of different loss functions

      View table

      Table 4. Comparative experiments of different loss functions

      LossfunctionPrecision /%Recall /%mAP@0.5 /%mAP@0.5:0.95 /%
      SIoU89.187.592.168.4
      EIoU89.586.191.968.6
      Shape-IoU89.685.892.368.4
      MDPIoU88.886.491.968.1
      PIoU89.587.592.768.7
    • Table 5. Comparative experiments of different object detection models

      View table

      Table 5. Comparative experiments of different object detection models

      ModelmAP@0.5 /%mAP@0.5:0.95 /%Params /106FLOPs /109FPS /(frame/s)
      Faster R-CNN74.554.7193.83171.427.55
      Sparse R-CNN81.259.9105.9264.228.12
      TOOD81.560.231.79180.935.65
      YOLOv3-tiny75.555.212.1318.951.45
      YOLOv5n89.764.72.507.155.90
      YOLOv6n88.264.14.2311.847.87
      YOLOv7-tiny91.467.76.0113.149.55
      YOLOv8n90.866.23.018.168.81
      YOLOv9s91.166.57.2026.750.51
      YOLOv10n90.465.72.326.770.15
      YOLOv11n90.966.32.586.367.25
      RT-DETR r1892.768.619.8056.950.35
      LEM-YOLO92.768.72.065.957.82
    • Table 6. Comparison of false positive and false negative rates after detection

      View table

      Table 6. Comparison of false positive and false negative rates after detection

      ModelFPR of fire /%FPR of smoke /%FNR of fire /%FNR of smoke /%
      YOLOv8n20.42.019.511.7
      LEM-YOLO19.21.816.310.4
    Tools

    Get Citation

    Copy Citation Text

    Ruijie Kuang, Xiang Li, Yu Liu, Bingying Hu, Xianshun Wang. LEM-YOLO-Based Lightweight Multi-Scale Detection of Forest Fire Smoke in UAV Imagery[J]. Laser & Optoelectronics Progress, 2025, 62(14): 1437003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Apr. 10, 2025

    Accepted: May. 7, 2025

    Published Online: Jul. 15, 2025

    The Author Email: Xiang Li (tom_lx@126.com)

    DOI:10.3788/LOP250979

    CSTR:32186.14.LOP250979

    Topics