Photonics Research, Volume. 10, Issue 4, 947(2022)

Optical topological lattices of Bloch-type skyrmion and meron topologies Editors' Pick

Qiang Zhang1, Zhenwei Xie1,2、*, Peng Shi1, Hui Yang1, Hairong He1, Luping Du1,3、*, and Xiaocong Yuan1,4、*
Author Affiliations
  • 1Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
  • 2e-mail: ayst3_1415926@sina.com
  • 3e-mail: lpdu@szu.edu.cn
  • 4e-mail: xcyuan@szu.edu.cn
  • show less
    References(62)

    [1] X. Yin, C. Peng. Manipulating light radiation from a topological perspective. Photon. Res., 8, B25-B38(2020).

    [2] J. Chen, C. Wan, Q. Zhan. Engineering photonic angular momentum with structured light: a review. Adv. Photon., 3, 064001(2021).

    [3] X. Z. Yu, W. Koshibae, Y. Tokunaga, K. Shibata, Y. Taguchi, N. Nagaosa, Y. Tokura. Transformation between meron and skyrmion topological spin textures in a chiral magnet. Nature, 564, 95-98(2018).

    [4] T. Skyrme. A unified field theory of mesons and baryons. Nucl. Phys., 31, 556-569(1962).

    [5] S. Tsesses, E. Ostrovsky, K. Cohen, B. Gjonaj, N. H. Lindner, G. Bartal. Optical skyrmion lattice in evanescent electromagnetic fields. Science, 361, 993-996(2018).

    [6] L. Du, A. Yang, A. V. Zayats, X. Yuan. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum. Nat. Phys., 15, 650-654(2019).

    [7] N. Rivera, I. Kaminer. Light–matter interactions with photonic quasiparticles. Nat. Rev. Phys., 2, 538-561(2020).

    [8] Z. Chen, M. Segev. Highlighting photonics: looking into the next decade. eLight, 1, 2(2021).

    [9] T. J. Davis, D. Janoschka, P. Dreher, B. Frank, F.-J. Meyer zu Heringdorf, H. Giessen. Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution. Science, 368, eaba6415(2020).

    [10] Y. Dai, Z. Zhou, A. Ghosh, R. S. K. Mong, A. Kubo, C.-B. Huang, H. Petek. Plasmonic topological quasiparticle on the nanometre and femtosecond scales. Nature, 588, 616-619(2020).

    [11] S. Tsesses, K. Cohen, E. Ostrovsky, B. Gjonaj, G. Bartal. Spin–orbit interaction of light in plasmonic lattices. Nano Lett., 19, 4010-4016(2019).

    [12] C. C. Li, P. Shi, L. P. Du, X. C. Yuan. Mapping the near-field spin angular momenta in the structured surface plasmon polariton field. Nanoscale, 12, 13674-13679(2020).

    [13] C. Bai, J. Chen, Y. Zhang, D. Zhang, Q. Zhan. Dynamic tailoring of an optical skyrmion lattice in surface plasmon polaritons. Opt. Express, 28, 10320-10328(2020).

    [14] Z.-L. Deng, T. Shi, A. Krasnok, X. Li, A. Alù. Observation of topologically robust localized magnetic plasmon skyrmions. Nat. Commun., 13, 8(2021).

    [15] M. Lin, W. Zhang, C. Liu, L. Du, X. Yuan. Photonic spin skyrmion with dynamic position control. ACS Photon., 8, 2567-2572(2021).

    [16] T. V. Mechelen, Z. Jacob. Photonic Dirac monopoles and skyrmions: spin-1 quantization [invited]. Opt. Mater. Express, 9, 95-111(2019).

    [17] S. Gao, F. C. Speirits, F. Castellucci, S. Franke-Arnold, S. M. Barnett, J. B. Götte. Paraxial skyrmionic beams. Phys. Rev. A, 102, 053513(2020).

    [18] R. Gutiérrez-Cuevas, E. Pisanty. Optical polarization skyrmionic fields in free space. J. Opt., 23, 024004(2021).

    [19] J. Zhu, S. Liu, Y.-S. Zhang. Synthesis and observation of optical skyrmionic structure in free space(2021).

    [20] Y. Shen, E. C. Martínez, C. Rosales-Guzmán. Generation of tunable optical skyrmions on Skyrme-Poincaré sphere(2021).

    [21] W. Lin, Y. Ota, Y. Arakawa, S. Iwamoto. Microcavity-based generation of full Poincaré beams with arbitrary skyrmion numbers. Phys. Rev. Res., 3, 023055(2021).

    [22] A. Karnieli, S. Tsesses, G. Bartal, A. Arie. Emulating spin transport with nonlinear optics, from high-order skyrmions to the topological Hall effect. Nat. Commun., 12, 1092(2021).

    [23] Y. Ilin, S. Tsesses, G. Bartal, Y. Sagi. Sub-wavelength spin excitations in ultracold gases created by stimulated Raman transitions. New J. Phys., 22, 093071(2020).

    [24] Y. Shen, Y. Hou, N. Papasimakis, N. I. Zheludev. Supertoroidal light pulses: propagating electromagnetic skyrmions in free space. Nat. Commun., 12, 5891(2021).

    [25] C. Guo, M. Xiao, Y. Guo, L. Yuan, S. Fan. Meron spin textures in momentum space. Phys. Rev. Lett., 124, 106103(2020).

    [26] M. Król, H. Sigurdsson, K. Rechcińska, P. Oliwa, K. Tyszka, W. Bardyszewski, A. Opala, M. Matuszewski, P. Morawiak, R. Mazur, W. Piecek, P. Kula, P. G. Lagoudakis, B. Piętka, J. Szczytko. Observation of second-order meron polarization textures in optical microcavities. Optica, 8, 255-261(2021).

    [27] X. Lei, A. Yang, P. Shi, Z. Xie, L. Du, A. V. Zayats, X. Yuan. Photonic spin lattices: symmetry constraints for skyrmion and meron topologies. Phys. Rev. Lett., 127, 237403(2021).

    [28] Y. Shen. Topological bimeronic beams. Opt. Lett., 46, 3737-3740(2021).

    [29] S. B. Wang, C. T. Chan. Lateral optical force on chiral particles near a surface. Nat. Commun., 5, 3307(2014).

    [30] K. Y. Bliokh, D. Smirnova, F. Nori. Quantum spin Hall effect of light. Science, 348, 1448-1451(2015).

    [31] T. V. Mechelen, Z. Jacob. Universal spin-momentum locking of evanescent waves. Optica, 3, 118-126(2016).

    [32] P. Shi, L. Du, C. Li, A. Zayats, X. Yuan. Transverse spin dynamics in structured electromagnetic guided waves. Proc. Natl. Acad. Sci. USA, 118, e2018816118(2021).

    [33] A. Fert, N. Reyren, V. Cros. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater., 2, 17031(2017).

    [34] A. N. Bogdanov, C. Panagopoulos. Physical foundations and basic properties of magnetic skyrmions. Nat. Rev. Phys., 2, 492-498(2020).

    [35] S.-H. Yang. Spintronics on chiral objects. Appl. Phys. Lett., 116, 120502(2020).

    [36] L. Du, A. Yang, X. Yuan. Ultrasensitive displacement sensing method and device based on local spin characteristics(2021).

    [37] Q. Zhang, Z. Liu, F. Qin, S. J. Zeng, D. Zhang, Z. Gu, X. Liu, J.-J. Xiao. Exploring optical resonances of nanoparticles excited by optical skyrmion lattices. Opt. Express, 27, 7009-7022(2019).

    [38] J. Wätzel, J. Berakdar. Topological light fields for highly non-linear charge quantum dynamics and high harmonic generation. Opt. Express, 28, 19469-19481(2020).

    [39] X.-G. Wang, L. Chotorlishvili, N. Arnold, V. K. Dugaev, I. Maznichenko, J. Barnaś, P. A. Buczek, S. S. P. Parkin, A. Ernst. Plasmonic skyrmion lattice based on the magnetoelectric effect. Phys. Rev. Lett., 125, 227201(2020).

    [40] X. Lei, L. Du, X. Yuan, A. V. Zayats. Optical spin–orbit coupling in the presence of magnetization: photonic skyrmion interaction with magnetic domains. Nanophotonics, 10, 3667-3675(2021).

    [41] T. Meiler, B. Frank, H. Giessen. Dynamic tailoring of an optical skyrmion lattice in surface plasmon polaritons: comment. Opt. Express, 28, 33614-33615(2020).

    [42] C. Bai, J. Chen, D. Zhang, Q. Zhan. Dynamic tailoring of an optical skyrmion lattice in surface plasmon polaritons: reply. Opt. Express, 28, 33616-33618(2020).

    [43] G. Mi, V. Van. Characteristics of surface plasmon polaritons at a chiral–metal interface. Opt. Lett., 39, 2028-2031(2014).

    [44] H. Ge, X.-Y. Xu, L. Liu, R. Xu, Z.-K. Lin, S.-Y. Yu, M. Bao, J.-H. Jiang, M.-H. Lu, Y.-F. Chen. Observation of acoustic skyrmions. Phys. Rev. Lett., 127, 144502(2021).

    [45] S. Quabis, R. Dorn, G. Leuchs. Generation of a radially polarized doughnut mode of high quality. Appl. Phys. B, 81, 597-600(2005).

    [46] C.-F. Kuo, S.-C. Chu. Dynamic control of the interference pattern of surface plasmon polaritons and its application to particle manipulation. Opt. Express, 26, 19123-19136(2018).

    [47] F. Träger. Springer Handbook of Lasers and Optics(2012).

    [48] I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, A. J. Viitanen. Electromagnetic Waves in Chiral and Bi-Isotropic Media(1994).

    [49] C. Kelly, L. Khosravi Khorashad, N. Gadegaard, L. D. Barron, A. O. Govorov, A. S. Karimullah, M. Kadodwala. Controlling metamaterial transparency with superchiral fields. ACS Photon., 5, 535-543(2018).

    [50] C. F. Bohren. Light scattering by an optically active sphere. Chem. Phys. Lett., 29, 458-462(1974).

    [51] N. Nagaosa, Y. Tokura. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol., 8, 899-911(2013).

    [52] P. Shi, L. Du, M. Li, X. Yuan. Symmetry-protected photonic chiral spin textures by spin–orbit coupling. Laser Photon. Rev., 15, 2000554(2021).

    [53] Q. Zhang, Z. Xie, L. Du, P. Shi, X. Yuan. Bloch-type photonic skyrmions in optical chiral multilayers. Phys. Rev. Res., 3, 023109(2021).

    [54] X. Zhang, Q. Xu, L. Xia, Y. Li, J. Gu, Z. Tian, C. Ouyang, J. Han, W. Zhang. Terahertz surface plasmonic waves: a review. Adv. Photon., 2, 014001(2020).

    [55] J. S. T. Smalley, F. Vallini, X. Zhang, Y. Fainman. Dynamically tunable and active hyperbolic metamaterials. Adv. Opt. Photon., 10, 354-408(2018).

    [56] G. Hu, Q. Ou, G. Si, Y. Wu, J. Wu, Z. Dai, A. Krasnok, Y. Mazor, Q. Zhang, Q. Bao, C.-W. Qiu, A. Alù. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature, 582, 209-213(2020).

    [57] X. Lin, Z. Liu, T. Stauber, G. Gómez-Santos, F. Gao, H. Chen, B. Zhang, T. Low. Chiral plasmons with twisted atomic bilayers. Phys. Rev. Lett., 125, 077401(2020).

    [58] G. Hu, C. Zheng, J. Ni, C.-W. Qiu, A. Alù. Enhanced light-matter interactions at photonic magic-angle topological transitions. Appl. Phys. Lett., 118, 211101(2021).

    [59] H. Zhao, X. Chen, C. Ouyang, H. Wang, D. Kong, P. Yang, B. Zhang, C. Wang, G. Wei, T. Nie, W. Zhao, J. Miao, Y. Li, L. Wang, X. Wu. Generation and manipulation of chiral terahertz waves in the three-dimensional topological insulator Bi2Te3. Adv. Photon., 2, 066003(2020).

    [60] M. Jung, R. Gladstone, G. Shvets. Nanopolaritonic second-order topological insulator based on graphene plasmons. Adv. Photon., 2, 046003(2020).

    [61] Q. Yan, Q. Chen, L. Zhang, R. Xi, H. Chen, Y. Yang. Unconventional Weyl exceptional contours in non-Hermitian photonic continua. Photon. Res., 9, 2435-2442(2021).

    [62] H. Zhang, S. Xia, Y. Zhang, Y. Li, D. Song, C. Liu, Z. Zhang. Nonlinear topological valley Hall edge states arising from type-II Dirac cones. Adv. Photon., 3, 056001(2021).

    Tools

    Get Citation

    Copy Citation Text

    Qiang Zhang, Zhenwei Xie, Peng Shi, Hui Yang, Hairong He, Luping Du, Xiaocong Yuan, "Optical topological lattices of Bloch-type skyrmion and meron topologies," Photonics Res. 10, 947 (2022)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Surface Optics and Plasmonics

    Received: Nov. 3, 2021

    Accepted: Feb. 1, 2022

    Published Online: Mar. 16, 2022

    The Author Email: Zhenwei Xie (ayst3_1415926@sina.com), Luping Du (lpdu@szu.edu.cn), Xiaocong Yuan (xcyuan@szu.edu.cn)

    DOI:10.1364/PRJ.447311

    Topics