Infrared and Laser Engineering, Volume. 46, Issue 10, 1006005(2017)
Engineering of Fano resonance in a cross bowtie nanostructure for surface enhanced coherent anti-Stokes Raman scattering
[1] [1] Raman C V. A change of wave-length in light scattering[J]. Nature, 1928, 121(3051): 619-619.
[2] [2] McReery R. Raman Spectroscopy for Chemical Analysis[M]. New York: John Wiley & Sons, 2000.
[3] [3] Fleischmann M, Hendra P J, Mcquillan A J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chem Phys Lett, 1974, 26(2): 163-166.
[4] [4] Lv Weiyu, Yuan Ke′e, Wei Xu, et al. A mobile lidar system for aerosol and water vapor detection in troposphere with mobile lida[J]. Infrared and Laser Engineering, 2016, 45(3): 0330001. (in Chinese)
[5] [5] Wei H, Xu H X. Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy[J]. Nanoscale, 2013, 5(22): 10794-10805.
[6] [6] Muller M, Zumbusch A. Coherent anti-stokes Raman scattering microscopy[J]. Chem Phys Chem, 2007, 8(5): 2156-2170.
[7] [7] Liang E J, Weippert A, Funk J M, et al. Experimental observation of surface-enhanced coherent anti-Stokes Raman scattering[J]. Chem Phys Lett, 1994, 227(1-2): 115-120.
[8] [8] Taro I, Norihiko H, Mamoru H, et al. Local enhancement of coherent anti-Stokes Raman scattering by isolated gold nanoparticles[J]. J Raman Spectrosc, 2003, 34: 651-654.
[9] [9] Christian S, Clemens F K, Jeremy J B, et al. Surface enhanced coherent anti-Stokes Raman scattering on nanostructured gold surfaces[J]. Nano Lett, 2011, 11(12): 5339-5343.
[10] [10] Zhang Y, Zhen Y R, Oara N, et al. Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance[J]. Nat Commun, 2014, 5: 4424.
[11] [11] He J N, Fan C Z, Ding P, et al. Near-field engineering of Fano resonances in a plasmonic assembly for maximizing CARS enhancements[J]. Sci Rep, 2016, 6: 20777.
[12] [12] McLeod A, Weber-Bargioni A, Zhang Z, et al. Nonperturbative visualization of nanoscale plasmonic field distributions via photon localization microscopy[J]. Phys Rev Lett, 2011, 106(3): 037402.
[13] [13] Zhang Z, Weber-Bargioni A, Wu S W, et al. Manipulating nanoscale light fields with the asymmetric bowtie nano-colorsorter[J]. Nano Lett, 2009, 9(12): 4505-4509.
[14] [14] Johnson P B, Christy R W. Optical constants of the noble metals[J]. Phys Rev B, 1972, 6(12): 4370-4379.
[15] [15] Tolles W M, Nibler J W, McDonald J R, et al. A review of the theory and application of coherent anti-Stokes Raman spectroscopy(CARS)[J]. Appl Spectrosc, 1977, 31(4): 253-271.
[16] [16] Begley R F, Harvey A B, Byer R L. Coherent anti-Stokes Raman spectroscopy[J]. Appl Phys Lett, 1974, 25: 387-390.
[17] [17] Jonathan A F, Bao K, Wu C H, et al. Fano-like interference in self-assembled plasmonic quadrumer clusters[J]. Nano Lett, 2010, 10: 4680-4685.
[18] [18] Liu G D, Zhai X, Wang L L. Actively tunable Fano resonance based on a T-shaped graphene nanodimer[J]. Plasmonics, 2016, 11(2): 381-387.
[19] [19] Prodan E, Radloff C, Nordlander P, et al. A hybridization model for the plasmon response of complex nanostructures[J]. Science, 2003, 302(5644): 419-422.
[20] [20] Andrea L, Benjamin G, Peter N, et al. Mechanisms of Fano resonances in coupled plasmonic systems[J]. ACS Nano, 2013, 7(5): 4527-4536.
[21] [21] Ai L K, Antonio I F D, David W M, et al. High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures[J]. Nano Lett, 2011, 11(S2): 1323-1330.
[22] [22] Fan J A, Bao K, Wu C, et al. Fano-like onterference in self-assembled plasmonic quadrumer clusters[J]. Nano Lett, 2010, 10(11): 4680-4685.
[23] [23] Zhang Y, Wen F, Zhen Y R, et al. Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing[J]. Natl Acad Sci USA, 2013, 110(23): 9215-9219.
[24] [24] Kathryn M M, Jason H H. Localized surface plasmon resonance sensors[J]. Chem Rev, 2011, 111(6): 3828-3857.
[25] [25] Hentschel M, Dregely D, Vogelgesang R, et al. Plasmonic oligomers: the role of individual particles in collective behavior[J]. ACS Nano, 2011, 5(3): 2042-2050.
Get Citation
Copy Citation Text
Zhang Zuyin, Zhu Haijun, Song Guofeng. Engineering of Fano resonance in a cross bowtie nanostructure for surface enhanced coherent anti-Stokes Raman scattering[J]. Infrared and Laser Engineering, 2017, 46(10): 1006005
Category: 激光技术及应用
Received: Feb. 5, 2017
Accepted: Mar. 3, 2017
Published Online: Nov. 27, 2017
The Author Email: Zuyin Zhang (zhangzuyin@semi.ac.cn)