Chinese Journal of Liquid Crystals and Displays, Volume. 37, Issue 1, 116(2022)

Improved SSD based aircraft remote sensing image target detection

WANG Hao-tong1、* and GUO Zhong-hua1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(14)

    [4] [4] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada: Curran Associates Inc., 2012: 1097-1105.

    [5] [5] GIRSHICK R. Fast R-CNN [C]//2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile: IEEE, 2015: 1440-1448.

    [6] [6] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [J]. IEEE Transactions on pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.

    [7] [7] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]//Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016: 779-788.

    [8] [8] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector [C]//14th European Conference on Computer Vision. Amsterdam, The Netherlands: Springer, 2016: 21-37.

    [12] [12] YU X, FU L R, DAI B S, et al. Soybean leaf morphology classification based on FPN-SSD and knowledge distillation [J]. Journal of Northeast Agricultural University (English Edition), 2020, 27(4): 9-17.

    [14] [14] LIN T Y, DOLLR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE, 2017: 936-944.

    [15] [15] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016: 770-778.

    [16] [16] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [J]. arXiv: 1409.1556, 2014.

    [18] [18] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318-327.

    [21] [21] XU J, LI Z S, DU B W, et al. Reluplex made more practical: leaky ReLU [C]//Proceedings of the 2020 IEEE Symposium on Computers and Communications (ISCC). Rennes, France: IEEE, 2020: 1-7.

    [29] [29] REDMON J, FARHADI A. YOLOv3: an incremental improvement [J]. arXiv: 1804.02767, 2018.

    [30] [30] FU C Y, LIU W, RANGA A, et al. DSSD: deconvolutional single shot detector [J]. arXiv: 1701.06659, 2017.

    Tools

    Get Citation

    Copy Citation Text

    WANG Hao-tong, GUO Zhong-hua. Improved SSD based aircraft remote sensing image target detection[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(1): 116

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 5, 2021

    Accepted: --

    Published Online: Mar. 1, 2022

    The Author Email: WANG Hao-tong (562287297@qq.com)

    DOI:10.37188/cjlcd.2021-0203

    Topics