Chinese Optics Letters, Volume. 20, Issue 8, 081701(2022)

A novel needle probe for deeper photoacoustic viscoelasticity measurement

Daoqian Yang1,2, Zhongjiang Chen3、*, and Da Xing1,2
Author Affiliations
  • 1MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
  • 2Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
  • 3Department of Ophthalmology and Optometry, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350004, China
  • show less
    References(27)

    [1] J. F. Greenleaf, M. Fatemi, M. Insana. Selected methods for imaging elastic properties of biological tissues. Annu. Rev. Biomed. Eng., 5, 57(2003).

    [2] R. M. Sigrist, J. Liau, A. El Kaffas, M. C. Chammas, J. K. Willmann. Ultrasound elastography: review of techniques and clinical applications. Theranostics, 7, 1303(2017).

    [3] D. M. McGrath, N. Ravikumar, I. D. Wilkinson, A. F. Frangi, Z. A. Taylor. Magnetic resonance elastography of the brain: an in silico study to determine the influence of cranial anatomy. Magn. Reson. Med., 76, 645(2016).

    [4] W. M. Allen, K. Y. Foo, R. Zilkens, K. M. Kennedy, Q. Fang, L. Chin, B. F. Kennedy. Clinical feasibility of optical coherence micro-elastography for imaging tumor margins in breast-conserving surgery. Biomed. Opt. Express., 9, 6331(2018).

    [5] W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, B. F. Kennedy. Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins. Biomed. Opt. Express., 7, 4139(2016).

    [6] R. M. Lerner, S. R. Huang, K. J. Parker. “Sonoelasticity” images derived from ultrasound signals in mechanically vibrated tissues. Ultrasound Med Biol., 16, 231(1990).

    [7] M. Fatemi, J. F. Greenleaf. Ultrasound-stimulated vibro-acoustic spectrography. Science, 280, 82(1998).

    [8] G. Gao, S. Yang, D. Xing. Viscoelasticity imaging of biological tissues with phase-resolved photoacoustic measurement. Opt. Lett., 36, 3341(2011).

    [9] C. Chen, Y. Zhao, S. Yang, D. Xing. Mechanical characterization of intraluminal tissue with phase-resolved photoacoustic viscoelasticity endoscopy. Biomed. Opt. Express, 6, 4975(2015).

    [10] P. Wang, Z. Chen, D. Xing. Multi-parameter characterization of atherosclerotic plaques based on optical coherence tomography, photoacoustic and viscoelasticity imaging. Opt. Express, 28, 13761(2020).

    [11] Y. Zhao, C. Chen, S. Yang, D. Xing. Mechanical evaluation of lipid accumulation in atherosclerotic tissues by photoacoustic viscoelasticity imaging. Opt. Lett., 41, 4522(2016).

    [12] D. Jin, F. Yang, Z. Chen, S. Yang, D. Xing. Biomechanical and morphological multi-parameter photoacoustic endoscope for identification of early esophageal disease. Appl. Phys. Lett., 111, 103703(2017).

    [13] Q. Wang, Y. Shi, F. Yang, S. Yang. Quantitative photoacoustic elasticity and viscosity imaging for cirrhosis detection. Appl. Phys. Lett., 112, 211902(2018).

    [14] F. Yang, Z. Chen, D. Xing. Single-cell photoacoustic microrheology. IEEE Trans. Med. Imaging, 39, 1791(2019).

    [15] S. Du, Z. Chen, D. Xing. Spectral interferometric depth-resolved photoacoustic viscoelasticity imaging. Opt. Lett., 46, 1724(2021).

    [16] C. P. Liang, J. Wierwille, T. Moreira, G. Schwartzbauer, M. S. Jafri, C. M. Tang, Y. Chen. A forward-imaging needle-type OCT probe for image guided stereotactic procedures. Opt. Express, 19, 26283(2011).

    [17] X. Yang, D. Lorenser, R. A. McLaughlin, R. W. Kirk, M. Edmond, M. C. Simpson, D. D. Sampson. Imaging deep skeletal muscle structure using a high-sensitivity ultrathin side-viewing optical coherence tomography needle probe. Biomed. Opt. Express, 5, 136(2014).

    [18] H. Ramakonar, B. C. Quirk, R. W. Kirk, J. Li, A. Jacques, C. R. Lind, R. A. McLaughlin. Intraoperative detection of blood vessels with an imaging needle during neurosurgery in humans. Sci. Adv., 4, eaav4992(2018).

    [19] X. Li, C. Chudoba, T. Ko, C. Pitris, J. G. Fujimoto. Imaging needle for optical coherence tomography. Opt. Lett., 25, 1520(2000).

    [20] W. A. Reed, M. F. Yan, M. J. Schnitzer. Gradient-index fiber-optic microprobes for minimally invasive in vivo low-coherence interferometry. Opt. Lett., 27, 1794(2002).

    [21] Y. Mao, S. Chang, S. Sherif, C. Flueraru. Graded-index fiber lens proposed for ultrasmall probes used in biomedical imaging. Appl. Opt., 46, 5887(2007).

    [22] D. Lorenser, X. Yang, R. W. Kirk, B. C. Quirk, R. A. McLaughlin, D. D. Sampson. Ultrathin side-viewing needle probe for optical coherence tomography. Opt. Lett., 36, 3894(2011).

    [23] N. Iftimia, J. Park, G. Maguluri, S. Krishnamurthy, A. McWatters, S. H. Sabir. Investigation of tissue cellularity at the tip of the core biopsy needle with optical coherence tomography. Biomed. Opt. Express, 9, 694(2018).

    [24] K. M. Kennedy, R. A. McLaughlin, B. F. Kennedy, A. Tien, B. Latham, C. M. Saunders, D. D. Sampson. Needle optical coherence elastography for the measurement of microscale mechanical contrast deep within human breast tissues. J. Biomed. Opt., 18, 121510(2013).

    [25] R. A. McLaughlin, B. C. Quirk, A. Curatolo, R. W. Kirk, L. Scolaro, D. Lorenser, D. D. Sampson. Imaging of breast cancer with optical coherence tomography needle probes: feasibility and initial results. IEEE J. Sel. Top. Quantum Electron, 18, 1184(2011).

    [26] A. Curatolo, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, A. G. Bourke, B. A. Wood, D. D. Sampson. Ultrasound-guided optical coherence tomography needle probe for the assessment of breast cancer tumor margins. Am. J. Roentgenol., 199, W520(2012).

    [27] M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, D. D. Sampson. Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour. Sci. Rep., 6, 28771(2016).

    Cited By
    Tools

    Get Citation

    Copy Citation Text

    Daoqian Yang, Zhongjiang Chen, Da Xing, "A novel needle probe for deeper photoacoustic viscoelasticity measurement," Chin. Opt. Lett. 20, 081701 (2022)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Biophotonics

    Received: Feb. 7, 2022

    Accepted: Apr. 28, 2022

    Posted: May. 6, 2022

    Published Online: May. 26, 2022

    The Author Email: Zhongjiang Chen (zjchen@fjmu.edu.cn)

    DOI:10.3788/COL202220.081701

    Topics