Journal of Synthetic Crystals, Volume. 53, Issue 4, 600(2024)

Research Progress on the Preparation Method and Application of Molybdenum Disulfide Nanomaterials

ZHANG Jiahao, WANG Dexiu, LI Yuqi, XU Ying, LIANG Shiming*, and SONG Xuesheng
Author Affiliations
  • [in Chinese]
  • show less
    References(98)

    [1] [1] WANG X, SONG L, CHEN L, et al. Research Progress of MoS2 nanosheets[J]. Materials Chemistry Frontiers, 2014(4): 49-62 (in Chinese).

    [2] [2] GAN X T, GAO Y D, FAI MAK K, et al. Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity[J]. Applied Physics Letters, 2013, 103(18): 181119.

    [3] [3] HU J T, YU L A, DENG J A, et al. Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol[J]. Nature Catalysis, 2021, 4(3): 242-250.

    [4] [4] WEI G H, STANEV T K, CZAPLEWSKI D A, et al. Silicon-nitride photonic circuits interfaced with monolayer MoS2[J]. Applied Physics Letters, 2015, 107(9): 091112.

    [5] [5] KIM J S, YOO H W, CHOI H O, et al. Tunable volatile organic compounds sensor by using thiolated ligand conjugation on MoS2[J]. Nano Letters, 2014, 14(10): 5941-5947.

    [6] [6] RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6(3): 147-150.

    [7] [7] WANG M. Preparation and photocatalytic hydrogen production performance of molybdenum disulfide quantum dot-graphene oxide composites[J]. Journal of Northwest Normal University (Natural Science), 2018, 54(1): 38-42.

    [8] [8] SPLENDIANI A, SUN L A, ZHANG Y B, et al. Emerging photoluminescence in monolayer MoS2[J]. Nano Letters, 2010, 10(4): 1271-1275.

    [9] [9] LIN Z T, LONG L C, YANG Y, et al. Numerical simulation of the thermal stress of layered molybdenum disulfide[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516028.

    [10] [10] ZHONG W, QIAN W, YAN S M, et al. Synthesis, Optical and hydrogen evolution catalytic properties of monolayer MoS2 quantum dots[J]. Journal of Jilin Normal University (Natural Science Edition), 2016, 37(3): 1-7.

    [11] [11] KE S K, LAI Y L, LI L H, et al. Molybdenum disulfide quantum dots attenuates endothelial-to-mesenchymal transition by activating TFEB-mediated lysosomal biogenesis[J]. ACS Biomaterials Science & Engineering, 2019, 5(2): 1057-1070.

    [12] [12] XU Y L, NIU X Y, CHEN H L, et al. Switch-on fluorescence sensor for ascorbic acid detection based on MoS2 quantum dots-MnO2 nanosheets system and its application in fruit samples[J]. Chinese Chemical Letters, 2017, 28(2): 338-344.

    [13] [13] HU W B, ZHANG W, GU C D. Review of molybdenum disulfide photodetectors[J]. Laser & Optoelectronics Progress, 2021, 58(19): 1900006.

    [14] [14] MUKHERJEE S, MAITI R S, KATIYAR A K, et al. Novel colloidal MoS2 quantum dot heterojunctions on silicon platforms for multifunctional optoelectronic devices[J]. Scientific Reports, 2016, 6: 29016.

    [15] [15] GOPALAKRISHNAN D, DAMIEN D, SHAIJUMON M M. MoS2 quantum dot-interspersed exfoliated MoS2 nanosheets[J]. ACS Nano, 2014, 8(5): 5297-5303.

    [16] [16] GUO X R, WANG Y, WU F Y, et al. A colorimetric method of analysis for trace amounts of hydrogen peroxide with the use of the nano-properties of molybdenum disulfide[J]. Analyst, 2015, 140(4): 1119-1126.

    [17] [17] NIU Y, JIAO W C, WANG R G, et al. Hybrid nanostructures combining graphene-MoS2 quantum dots for gas sensing[J]. Journal of Materials Chemistry A, 2016, 4(21): 8198-8203.

    [18] [18] ZHANG J H. Hg2+ detection based on functionalized L-cysteine MQDs fluorescent quantum dots[J]. Chinese Journal of Analytical Sciences, 2018, 34(1): 17-21.

    [19] [19] LI Q Q, YUE L T, WAN G F, et al. “Bottom-up” one-step hydrothermal preparation of molybdenum disulfide quantum dots and their properties[J]. Chemical Reagents. 2018, 40(12): 1126-1130.

    [20] [20] DAI W H, DONG H F, FUGETSU B, et al. Tunable fabrication of molybdenum disulfide quantum dots for intracellular microRNA detection and multiphoton bioimaging[J]. Small, 2015, 11(33): 4158-4164.

    [21] [21] AN S J, PARK D Y, LEE C, et al. Facile preparation of molybdenum disulfide quantum dots using a femtosecond laser[J]. Applied Surface Science, 2020, 511: 145507.

    [22] [22] COLOMA A, DEL POZO M, MARTNEZ-MORO R, et al. MoS2 quantum dots for on-line fluorescence determination of the food additive allura red[J]. Food Chemistry, 2021, 345: 128628.

    [23] [23] HUANG H, DU C C, SHI H Y, et al. Water-soluble monolayer molybdenum disulfide quantum dots with upconversion fluorescence[J]. Particle & Particle Systems Characterization, 2015, 32(1): 72-79.

    [24] [24] CHEN X, PARK Y J, KANG M, et al. CVD-grown monolayer MoS2 in bioabsorbable electronics and biosensors[J]. Nature Communications, 2018, 9: 1690.

    [25] [25] ZHANG H X. Study of the hydrothermal synthesis of molybdenum disulfide and properties characterization[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2020 (in Chinese).

    [26] [26] AUTS G, ISAEVA A, MORESCHINI L, et al. A novel quasi-one-dimensional topological insulator in bismuth iodide β-Bi4I4[J]. Nature Materials, 2016, 15(2): 154-158.

    [27] [27] GENTILE P, CUOCO M, ORTIX C. Edge states and topological insulating phases generated by curving a nanowire with rashba spin-orbit coupling[J]. Physical Review Letters, 2015, 115(25): 256801.

    [28] [28] WEI W, SAMAD L, CHOI J W, et al. Synthesis of molybdenum disulfide nanowire arrays using a block copolymer template[J]. Chemistry of Materials, 2016, 28(11): 4017-4023.

    [29] [29] XU H, LIU S L, DING Z J, et al. Oscillating edge states in one-dimensional MoS2 nanowires[J]. Nature Communications, 2016, 7: 12904.

    [30] [30] CHEN Y M, YU X Y, LI Z, et al. Hierarchical MoS2 tubular structures internally wired by carbon nanotubes as a highly stable anode material for lithium-ion batteries[J]. Science Advances, 2016, 2(7): e1600021.

    [31] [31] CHITHAIAH P, GHOSH S, IDELEVICH A, et al. Solving the “MoS2 nanotubes” synthetic enigma and elucidating the route for their catalyst-free and scalable production[J]. ACS Nano, 2020, 14(3): 3004-3016.

    [32] [32] LAUHON L J, GUDIKSEN M S, WANG D L, et al. Epitaxial core-shell and core-multishell nanowire heterostructures[J]. Nature, 2002, 420(6911): 57-61.

    [33] [33] LOW J, YU J G, JARONIEC M, et al. Heterojunction photocatalysts[J]. Advanced Materials, 2017, 29(20): 1601694.

    [34] [34] COLEMAN J N, AL E. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. ChemInform, 2011, 42(18): 568-571.

    [35] [35] XIE J F, ZHANG J J, LI S A, et al. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution[J]. Journal of the American Chemical Society, 2013, 135(47): 17881-17888.

    [36] [36] MA J, FAN H, ZHANG W, et al. High sensitivity and ultra-low detection limit of chlorine gas sensor based on In2O3 nanosheets by a simple template method[J]. Sensors and Actuators B: Chemical, 2020, 305: 127456.

    [37] [37] XUE D P, ZHANG S S, ZHANG Z Y. Hydrothermal synthesis of methane sensitive porous In2O3 nanosheets[J]. Materials Letters, 2019, 252: 169-172.

    [38] [38] PATIL S P, PATIL V L, SHENDAGE S S, et al. Spray pyrolyzed indium oxide thick films as NO2 gas sensor[J]. Ceramics International, 2016, 42(14): 16160-16168.

    [39] [39] JOSHI B, KHALIL A M E, ZHANG S W, et al. Application of 2D MoS2 nanoflower for the removal of emerging pollutants from water[J]. ACS Eng, 2023. https://doi.org/10.1021/acsengineeringau.3c00032.

    [40] [40] WANG S Q, LI G H, DU G D, et al. Hydrothermal synthesis of molybdenum disulfide for lithium ion battery applications[J]. Chinese Journal of Chemical Engineering, 2010, 18(6): 910-913.

    [41] [41] ZHOU M, DONG S J. Bioelectrochemical interface engineering: toward the fabrication of electrochemical biosensors, biofuel cells, and self-powered logic biosensors[J]. Accounts of Chemical Research, 2011, 44(11): 1232-1243.

    [42] [42] ZONG X, YAN H J, WU G P, et al. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation[J]. Journal of the American Chemical Society, 2008, 130(23): 7176-7177.

    [43] [43] CHANG K, CHEN W X. L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries[J]. ACS Nano, 2011, 5(6): 4720-4728.

    [44] [44] KIBSGAARD J, CHEN Z B, REINECKE B N, et al. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis[J]. Nature Materials, 2012, 11(11): 963-969.

    [45] [45] VAN DER ZANDE A M, HUANG P Y, CHENET D A, et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide[J]. Nature Materials, 2013, 12(6): 554-561.

    [46] [46] LIANG X H, ZHANG X M, LIU W, et al. A simple hydrothermal process to grow MoS2 nanosheets with excellent dielectric loss and microwave absorption performance[J]. Journal of Materials Chemistry C, 2016, 4(28): 6816-6821.

    [47] [47] TANG G G, WANG Y J, CHEN W, et al. Hydrothermal synthesis and characterization of novel flowerlike MoS2 hollow microspheres[J]. Materials Letters, 2013, 100: 15-18.

    [48] [48] TAN Y H, YU K, YANG T, et al. The combinations of hollow MoS2 micro@nano-spheres: one-step synthesis, excellent photocatalytic and humidity sensing properties[J]. Journal of Materials Chemistry C, 2014, 2(27): 5422-5430.

    [49] [49] WANG M, LI G D, XU H Y, et al. Enhanced lithium storage performances of hierarchical hollow MoS2 nanoparticles assembled from nanosheets[J]. ACS Applied Materials & Interfaces, 2013, 5(3): 1003-1008.

    [50] [50] YU L M, GUO F, LIU S, et al. Hierarchical 3D flower-like MoS2 spheres: post-thermal treatment in vacuum and their NO2 sensing properties[J]. Materials Letters, 2016, 183: 122-126.

    [51] [51] CAMACHO-BRAGADO G A, ELECHIGUERRA J L, YACAMAN M J. Characterization of low dimensional molybdenum sulfide nanostructures[J]. Materials Characterization, 2008, 59(3): 204-212.

    [52] [52] DENG J, LI H B, WANG S H, et al. Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production[J]. Nature Communications, 2017, 8: 14430.

    [53] [53] CHEN W S, GU J J, DU Y P, et al. Achieving rich and active alkaline hydrogen evolution heterostructures via interface engineering on 2D 1T-MoS2 quantum sheets[J]. Advanced Functional Materials, 2020, 30(25): 2000551.

    [54] [54] LIU M Q, WANG J A, KLYSUBUN W, et al. Interfacial electronic structure engineering on molybdenum sulfide for robust dual-pH hydrogen evolution[J]. Nature Communications, 2021, 12: 5260.

    [55] [55] WANG X, CHU C C, SHEN L, et al. An ultrasensitive electrochemical immunosensor based on the catalytical activity of MoS2-Au composite using Ag nanospheres as labels[J]. Sensors and Actuators B: Chemical, 2015, 206: 30-36.

    [56] [56] LI H, YIN Z Y, HE Q Y, et al. Layered nanomaterials: fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature[J]. Small, 2012, 8(1): 2.

    [57] [57] LI Y X, SONG Z X, LI Y N, et al. Hierarchical hollow MoS2 microspheres as materials for conductometric NO2 gas sensors[J]. Sensors and Actuators B: Chemical, 2019, 282: 259-267.

    [58] [58] HE Q Y, ZENG Z Y, YIN Z Y, et al. Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications[J]. Small, 2012, 8(19): 2994-2999.

    [59] [59] CUI S M, WEN Z H, HUANG X K, et al. Stabilizing MoS2 nanosheets through SnO2 nanocrystal decoration for high-performance gas sensing in air[J]. Small, 2015, 11(19): 2305-2313.

    [60] [60] HE Q Y, ZENG W, WANG Y, et al. Large scale synthesis of flower-like SnO2 nanostructures via a facile hydrothermal route[J]. Materials Letters, 2013, 113: 42-45.

    [61] [61] XU X M, LI X, ZHANG H J, et al. Synthesis, characterization and gas sensing properties of porous flower-like indium oxide nanostructures[J]. RSC Advances, 2015, 5(38): 30297-30302.

    [62] [62] YU L M, GUO F, LIU Z Y, et al. Facile synthesis of three dimensional porous ZnO films with mesoporous walls and gas sensing properties[J]. Materials Characterization, 2016, 112: 224-228.

    [63] [63] YI J, LI M L, ZHOU H X, et al. Enhanced tribological properties of Y/MoS2 composite coatings prepared by chemical vapor deposition[J]. Ceramics International, 2020, 46(15): 23813-23819.

    [64] [64] NIU Y, WANG P, ZHANG M Z. Tuning the spin polarization in monolayer MoS2 through (Y, Yb) co-doping[J]. New Journal of Chemistry, 2020, 44(46): 20316-20321.

    [65] [65] CHEN Y Y, LIU F J, WANG J W, et al. Large modulation of mobile carriers within MoS2 by decoration of molecular dopants to enhance its gas sensing[J]. Applied Surface Science, 2020, 527: 146709.

    [66] [66] JENISHA M A, KAVIRAJAN S, HARISH S, et al. Multiple approaches of band engineering and mass fluctuation of solution-processed n-type re-doped MoS2 nanosheets for enhanced thermoelectric power factor[J]. Journal of Colloid and Interface Science, 2024, 653: 1150-1165.

    [67] [67] CHO S Y, KOH H J, YOO H W, et al. Tunable volatile-organic-compound sensor by using Au nanoparticle incorporation on MoS2[J]. ACS Sensors, 2017, 2(1): 183-189.

    [68] [68] PHAM T, LI G H, BEKYAROVA E, et al. MoS2-based optoelectronic gas sensor with sub-parts-per-billion limit of NO2 gas detection[J]. ACS Nano, 2019, 13(3): 3196-3205.

    [69] [69] MA D W, JU W W, LI T X, et al. The adsorption of CO and NO on the MoS2 monolayer doped with Au, Pt, Pd, or Ni: a first-principles study[J]. Applied Surface Science, 2016, 383: 98-105.

    [70] [70] PANCHU S J, RAJU K, SINGH P, et al. High mass loading of flowerlike Ni-MoS2 microspheres toward efficient intercalation pseudocapacitive electrodes[J]. ACS Applied Energy Materials, 2023, 6(4): 2187-2198.

    [71] [71] MA Y D, DAI Y, GUO M, et al. Graphene adhesion on MoS2 monolayer: an ab initio study[J]. Nanoscale, 2011, 3(9): 3883-3887.

    [72] [72] MA L B, HU Y, ZHU G Y, et al. In situ thermal synthesis of inlaid ultrathin MoS2/graphene nanosheets as electrocatalysts for the hydrogen evolution reaction[J]. Chemistry of Materials, 2016, 28(16): 5733-5742.

    [73] [73] SAAB M, RAYBAUD P. Tuning the magnetic properties of MoS2 single nanolayers by 3 d metals edge doping[J]. The Journal of Physical Chemistry C, 2016, 120(19): 10691-10697.

    [74] [74] LI G Q, ZHANG D, QIAO Q A, et al. All the catalytic active sites of MoS2 for hydrogen evolution[J]. Journal of the American Chemical Society, 2016, 138(51): 16632-16638.

    [75] [75] DENG J, LI H B, XIAO J P, et al. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping[J]. Energy & Environmental Science, 2015, 8(5): 1594-1601.

    [76] [76] GAO G P, SUN Q A, DU A J. Activating catalytic inert basal plane of molybdenum disulfide to optimize hydrogen evolution activity via defect doping and strain engineering[J]. The Journal of Physical Chemistry C, 2016, 120(30): 16761-16766.

    [77] [77] WU X H, ZHAO G Q, ZHAO Q, et al. Investigating the tribological performance of nanosized MoS2 on graphene dispersion in perfluoropolyether under high vacuum[J]. RSC Advances, 2016, 6(101): 98606-98610.

    [78] [78] ZENG Q F. Superlow friction and diffusion behaviors of a steel-related system in the presence of nano lubricant additive in PFPE oil[J]. Journal of Adhesion Science and Technology, 2019, 33(9): 1001-1018.

    [79] [79] XUE Y D, CAI W Q, ZHENG S L, et al. W-doped MoS2 nanosheets as a highly-efficient catalyst for hydrogen peroxide electroreduction in alkaline media[J]. Catalysis Science & Technology, 2017, 7(23): 5733-5740.

    [80] [80] LIU G, ZHAO Y N, SUN C H, et al. Synergistic effects of B/N doping on the visible-light photocatalytic activity of mesoporous TiO2[J]. Angewandte Chemie International Edition, 2008, 47(24): 4516-4520.

    [81] [81] KHAN R, KIM T J. Preparation and application of visible-light-responsive Ni-doped and SnO2-coupled TiO2 nanocomposite photocatalysts[J]. Journal of Hazardous Materials, 2009, 163(2/3): 1179-1184.

    [82] [82] LI H, YIN Z Y, HE Q Y, et al. Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature[J]. Small, 2012, 8(1): 63-67.

    [83] [83] LEMBKE D, KIS A. Breakdown of high-performance monolayer MoS2 transistors[J]. ACS Nano, 2012, 6(11): 10070-10075.

    [84] [84] SRIRAM B, BABY J N, HSU Y F, et al. In situ synthesis of a bismuth vanadate/molybdenum disulfide composite: an electrochemical tool for 3-nitro-l-tyrosine analysis[J]. Inorganic Chemistry, 2022, 61(35): 14046-14057.

    [85] [85] WANG Y H, WANG D C, DONG S Q, et al. A visible-light-driven photoelectrochemical sensing platform based on the BiVO4/FeOOH photoanode for dopamine detection[J]. Electrochimica Acta, 2022, 414: 140207.

    [86] [86] HWANG H, KIM H, CHO J. MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials[J]. Nano Letters, 2011, 11(11): 4826-4830.

    [87] [87] ACERCE M, VOIRY D, CHHOWALLA M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials[J]. Nature Nanotechnology, 2015, 10(4): 313-318.

    [88] [88] CAO L J, YANG S B, GAO W, et al. Direct laser-patterned micro-supercapacitors from paintable MoS2 films[J]. Small, 2013, 9(17): 2905-2910.

    [89] [89] JALALI M, MOAKHAR R S, ABDELFATTAH T, et al. Nanopattern-assisted direct growth of peony-like 3D MoS2/Au composite for nonenzymatic photoelectrochemical sensing[J]. ACS Applied Materials & Interfaces, 2020, 12(6): 7411-7422.

    [90] [90] ZHANG N, GAN S Y, WU T S, et al. Growth control of MoS2 nanosheets on carbon cloth for maximum active edges exposed: an excellent hydrogen evolution 3D cathode[J]. ACS Applied Materials & Interfaces, 2015, 7(22): 12193-12202.

    [91] [91] TAN C L, LAI Z C, ZHANG H A. Ultrathin two-dimensional multinary layered metal chalcogenide nanomaterials[J]. Advanced Materials, 2017, 29(37): 1701392.

    [92] [92] FU J N, ZHU W D, LIU X M, et al. Self-activating anti-infection implant[J]. Nature Communications, 2021, 12(1): 6907.

    [93] [93] LAVAISSE L M, HOLLMANN A, NAZARENO M A, et al. Zeta potential changes of Saccharomyces cerevisiae during fermentative and respiratory cycles[J]. Colloids and Surfaces B: Biointerfaces, 2019, 174: 63-69.

    [94] [94] LUAN X X, ZHU K L, ZHANG X A, et al. MoS2-2xSe2x nanosheets grown on hollow carbon spheres for enhanced electrochemical activity[J]. Langmuir, 2021, 37(27): 8314-8322.

    [95] [95] LIU T, ZHANG L Y, YOU W, et al. Core-shell nitrogen-doped carbon hollow spheres/Co3O4 nanosheets as advanced electrode for high-performance supercapacitor[J]. Small, 2018, 14(12): 1702407.

    [96] [96] YANG D, CAO L Y, FENG L L, et al. Controlled synthesis of V-doped heterogeneous Ni3S2/NiS nanorod arrays as efficient hydrogen evolution electrocatalysts[J]. Langmuir, 2021, 37(1): 357-365.

    [97] [97] LI Y, HORIA R, TAN W X, et al. Mesoporous titanium oxynitride monoliths from block copolymer-directed self-assembly of metal-urea additives[J]. Langmuir, 2020, 36(36): 10803-10810.

    [98] [98] JIAN J H, LI Y, BI H, et al. Aluminum decoration on MoS2 ultrathin nanosheets for highly efficient hydrogen evolution[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(11): 4547-4554.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Jiahao, WANG Dexiu, LI Yuqi, XU Ying, LIANG Shiming, SONG Xuesheng. Research Progress on the Preparation Method and Application of Molybdenum Disulfide Nanomaterials[J]. Journal of Synthetic Crystals, 2024, 53(4): 600

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 15, 2023

    Accepted: --

    Published Online: Aug. 22, 2024

    The Author Email: Shiming LIANG (lsmwind@163.com)

    DOI:

    CSTR:32186.14.

    Topics