Opto-Electronic Engineering, Volume. 44, Issue 12, 1146(2017)
Research and development of femtosecond-laser hyperdoped silicon
[1] [1] Ertekin E, Winkler M T, Recht D, et al. Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin[J]. Physical Review Letters, 2012, 108(2): 026401.
[2] [2] Sher M J. Intermediate band properties of femtosecond-laser hyperdoped silicon[D]. Cambridge, Massachusetts: Harvard University, 2013.
[3] [3] Sullivan J T, Simmons C B, Krich J J, et al. Methodology for vetting heavily doped semiconductors for intermediate band photovoltaics: a case study in sulfur-hyperdoped silicon[J]. Journal of Applied Physics, 2013, 114(10): 103701.
[4] [4] Ji Xu, Jiang Lan, Li Xiaowei, et al. Femtosecond laser-induced cross-periodic structures on a crystalline silicon surface under low pulse number irradiation[J]. Applied Surface Science, 2015, 326: 216–221.
[5] [5] Gimpel T, Guenther K M, Kontermann S, et al. Current-voltage characteristic and sheet resistances after annealing of femtosecond laser processed sulfur emitters for silicon solar cells[J]. Applied Physics Letters, 2014, 105(5): 053504.
[6] [6] Tull B R. Femtosecond laser ablation of silicon: nanoparticles, doping and photovoltaics[D]. Cambridge, Massachusetts: Harvard University, 2007.
[7] [7] Wu C, Crouch C H, Zhao L, et al. Near-unity below-band-gap absorption by microstructured silicon[J]. Applied Physics Letters, 2001, 78(13): 1850–1852.
[8] [8] Her T H, Finlay R J, Wu C, et al. Microstructuring of silicon with femtosecond laser pulses[J]. Applied Physics Letters, 1998, 73(12): 1673–1675.
[9] [9] Younkin R, Carey J E, Mazur E, et al. Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses[J]. Journal of Applied Physics, 2003, 93(5): 2626–2629.
[10] [10] Tull B R, Winkler M T, Mazur E. The role of diffusion in broadband infrared absorption in chalcogen-doped silicon[J]. Applied Physics A, 2009, 96(2): 327–334.
[11] [11] Crouch C H, Carey J E, Shen M, et al. Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation[J]. Applied Physics A, 2004, 79(7): 1635–1641.
[12] [12] Sheehy M A, Tull B R, Friend C M, et al. Chalcogen doping of silicon via intense femtosecond-laser irradiation[J]. Materials Science and Engineering: B, 2007, 137(1–3): 289–294.
[13] [13] Shao Hezhu, Li Yuan, Zhang Jinhu, et al. Physical mecha-nisms for the unique optical properties of chalco-gen-hyperdoped silicon[J]. Europhysics Letters, 2012, 99(4): 46005.
[14] [14] Mo Yina, Bazant M Z, Kaxiras E. Sulfur point defects in crystalline and amorphous silicon[J]. Physical Review B, 2004, 70(20): 205210.
[15] [15] Sanchez K, Aguilera I, Palacios P, et al. Formation of a reliable intermediate band in Si heavily coimplanted with chalcogens (S, Se, Te) and group III elements (B, Al)[J]. Physical Review B, 2010, 82(16): 165201.
[16] [16] Sundaram S K, Mazur E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser puls-es[J]. Nature Materials, 2002, 1(4): 217–224.
[17] [17] Anisimov S I, Kapeliovich B L, Perel’man T L. Electron emis-sion from metal surfaces exposed to ultrashort laser pulses[J]. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, 1974, 39(2): 375–377.
[18] [18] Lee S H, Lee J S, Park S, et al. Numerical analysis on heat transfer characteristics of a silicon film irradiated by pico-to femtosecond pulse lasers[J]. Numerical Heat Transfer, Part A: Applications, 2003, 44(8): 833–850.
[19] [19] Sim H S, Lee S H, Kang K G. Femtosecond pulse laser interactions with thin silicon films and crater formation con-sidering optical phonons and wave interference[J]. Mi-crosystem Technologies, 2008, 14(9–11): 1439–1446.
[20] [20] Yang Ming. Femtosecond laser induced mi-cro-/nano-structures on silicon[D]. Tianjin: Nankai University, 2014: 25–62.
[21] [21] Cavalleri A, Sokolowski-Tinten K, Bialkowski J, et al. Femto-second melting and ablation of semiconductors studied with time of flight mass spectroscopy[J]. Journal of Applied Physics, 1999, 85(6): 3301–3309.
[22] [22] Yang Ming, Wu Qiang, Chen Zhandong, et al. Generation and erasure of femtosecond laser-induced periodic surface structures on nanoparticle-covered silicon by a single laser pulse[J]. Optics Letters, 2014, 39(2): 343–346.
[23] [23] Huang Min, Zhao Fuli, Cheng Ya, et al. Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser[J]. ACS Nano, 2009, 3(12): 4062–4070.
[24] [24] Bonse J, Rosenfeld A, Krüger J. On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosec-ond-laser pulses[J]. Journal of Applied Physics, 2009, 106(10): 104910.
[25] [25] Bonse J, Rosenfeld A, Kruger J. Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of la-ser-induced periodic surface structures[J]. Applied Surface Science, 2011, 257(12): 5420–5423.
[26] [26] Han Yanhua, Qu Shiliang. The ripples and nanoparticles on silicon irradiated by femtosecond laser[J]. Chemical Physics Letters, 2010, 495(4–6): 241–244.
[27] [27] Garrelie F, Colombier J P, Pigeon F, et al. Evidence of surface plasmon resonance in ultrafast laser-induced ripples[J]. Op-tics Express, 2011, 19(10): 9035–9043.
[28] [28] Maier S A. Plasmonics: fundamentals and applications[M]. Boston, MA: Springer Science & Business Media, 2007.
[29] [29] Silvestrelli P L, Alavi A, Parrinello M, et al. Ab initio molecular dynamics simulation of laser melting of silicon[J]. Physical Review Letters, 1996, 77(15): 3149–3152.
[30] [30] Roeterdink W G, Juurlink L B F, Vaughan O P H, et al. Cou-lomb explosion in femtosecond laser ablation of Si(111)[J]. Applied Physics Letters, 2003, 82(23): 4190–4192.
[31] [31] Stoian R, Rosenfeld A, Hertel I V, et al. Comment on "Coulomb explosion in femtosecond laser ablation of Si(111)"[Appl. Phys. Lett. 82, 4190 (2003)][J]. Applied Physics Letters, 2004, 85(4): 694–695.
[32] [32] Amoruso S, Bruzzese R, Spinelli N, et al. Generation of silicon nanoparticles via femtosecond laser ablation in vacuum[J]. Applied Physics Letters, 2004, 84(22): 4502–4504.
[33] [33] Wu Zehua, Zhang Nan, Wang Mingwei, et al. Femtosecond laser ablation of silicon in air and vacuum[J]. Chinese Optics Letters, 2011, 9(9): 093201.
[34] [34] Chen Zhandong, Wu Qiang, Yang Ming, et al. Generation and evolution of plasma during femtosecond laser ablation of silicon in different ambient gases[J]. Laser and Particle Beams, 2013, 31(3): 539–545.
[35] [35] Chen Zhandong. Study on the mechanisms and the proper-ties of femtosecond-laser processing silicon[D]. Tianjin: Nankai University, 2014: 58–79.
[36] [36] Stuart B C, Feit M D, Herman S, et al. Nanosecond-to- femtosecond laser-induced breakdown in dielectrics[J]. Physical Review B, 1996, 53(4): 1749–1761.
[37] [37] Wendelen W, Mueller B Y, Autrique D, et al. Space charge corrected electron emission from an aluminum surface under non-equilibrium conditions[J]. Journal of Applied Physics, 2012, 111(11): 113110.
[38] [38] Chuang T J. Multiple photon excited SF6 interaction with silicon surfaces[J]. The Journal of Chemical Physics, 1981, 74(2): 1453–1460.
[39] [39] Liu Enke, Zhu Bingsheng, Luo Jinsheng. The physics of semiconductors[M]. Beijing: National Defense Industry Press, 1979.
[40] [40] Zheng B, Michel J, Ren F Y G, et al. Room‐temperature sharp line electroluminescence at λ=1.54 μm from an erbium‐doped, silicon light‐emitting diode[J]. Applied Physics Letters, 1994, 64(21): 2842–2844.
[41] [41] Svrcek V, Sasaki T, Shimizu Y, et al. Blue luminescent silicon nanocrystals prepared by ns pulsed laser ablation in water[J]. Applied Physics Letters, 2006, 89(21): 213113.
[42] [42] Wu C, Crouch C H, Zhao L, et al. Visible luminescence from silicon surfaces microstructured in air[J]. Applied Physics Letters, 2002, 81(11): 1999–2001.
[43] [43] Zhu Shiwei, Wang Lei, Chen Xing, et al. Synthesis and photoluminescence of silicon nanoparticles fabricated by pulse laser ablation[J]. Chinese Journal of Lasers, 2010, 37(3): 882–886.
[44] [44] Emelyanov A V, Kazanskii A G, Khenkin M V, et al. Visible luminescence from hydrogenated amorphous silicon modified by femtosecond laser radiation[J]. Applied Physics Letters, 2012, 101(8): 081902.
[45] [45] Lü Quan, Wang Jian, Liang Cong, et al. Strong infrared photoluminescence from black silicon made with femtosecond laser irradiation[J]. Optics Letters, 2013, 38(8): 1274–1276.
[46] [46] Chen Zhandong, Wu Qiang, Yang Ming, et al. Time-resolved photoluminescence of silicon microstructures fabricated by femtosecond laser in air[J]. Optics Express, 2013, 21(18): 21329–21336.
[47] [47] Huang Zhihong, Carey J E, Liu Mingguo, et al. Microstructured silicon photodetector[J]. Applied Physics Letters, 2006, 89(3): 033506.
[48] [48] Li X, Carey J E, Sickler J W, et al. Silicon photodiodes with high photoconductive gain at room temperature[J]. Optics Express, 2012, 20(5): 5518–5523.
[49] [49] Feng Guojin. Optical properties of micro-structured silicon by femtosecond laser and equipment[D]. Shanghai: Fudan University, 2010.
[50] [50] Li Yuan. Optical properties of micro-structured silicon by femtosecond laser[D]. Shanghai: Fudan University, 2012.
[51] [51] Lü Zhenhua. Fabrication and investigation of black silicon of enhanced near-infrared absorption[D]. Changchun: Jilin University, 2013.
[52] [52] Zhao Li, Wu Qiang, Zeng Qiang, et al. Sulfur-hyperdoped silicon photodetector with broadband spectral response and high gain at low bias[C]//Proceedings of 2016 Conference on Lasers and Electro-Optics, 2016: 1–2.
Get Citation
Copy Citation Text
Zixi Jia, Song Huang, Xiaorong Jin, Ming Yang, Zhandong Chen, Jianghong Yao, Qiang Wu, Jingjun Xu. Research and development of femtosecond-laser hyperdoped silicon[J]. Opto-Electronic Engineering, 2017, 44(12): 1146
Category:
Received: Oct. 20, 2017
Accepted: --
Published Online: Jan. 17, 2018
The Author Email: Wu Qiang (wuqiang@nankai.edu.cn)