International Journal of Extreme Manufacturing, Volume. 7, Issue 4, 45009(2025)
Femtosecond laser subtractive/additive-integrated biomimetic manufacturing for visible/infrared encryption and stimuli-responsive infrared decryption
[1] [1] Hasan J, Roy A, Chatterjee K and Yarlagadda P K D V. 2019. Mimicking insect wings: the roadmap to bioinspiration.ACS Biomater. Sci. Eng.5, 3139–3160.
[2] [2] Espeland M et al. 2018. A comprehensive and dated phylogenomic analysis of butterflies.Curr. Biol.28, 770–778.e5.
[3] [3] Dou S L, Xu H B, Zhao J P, Zhang K, Li N, Lin Y P, Pan L and Li Y. 2021. Bioinspired microstructured materials for optical and thermal regulation.Adv. Mater.33, 2000697.
[4] [4] Zhao Q B, Fan T X, Ding J, Zhang D, Guo Q X and Kamada M. 2011. Super black and ultrathin amorphous carbon film inspired by anti-reflection architecture in butterfly wing.Carbon49, 877–883.
[5] [5] Davis A L, Nijhout H F and Johnsen S. 2020. Diverse nanostructures underlie thin ultra-black scales in butterflies.Nat. Commun.11, 1294.
[6] [6] Vukusic P, Sambles J R and Lawrence C R. 2004. Structurally assisted blackness in butterfly scales.Proc. R. Soc.B271, S237–S239.
[7] [7] Lou C H et al. 2021. Enhancement of infrared emissivity by the hierarchical microstructures from the wing scales of butterflyRapala dioetas.APL Photonics6, 036101.
[8] [8] Tsai C C, Childers R A, Nan Shi N, Ren C, Pelaez J N, Bernard G D, Pierce N E and Yu N F. 2020. Physical and behavioral adaptations to prevent overheating of the living wings of butterflies.Nat. Commun.11, 551.
[9] [9] Krishna A, Nie X, Warren A D, Llorente-Bousquets J E, Briscoe A D and Lee J. 2020. Infrared optical and thermal properties of microstructures in butterfly wings.Proc. Natl Acad. Sci. USA117, 1566–1572.
[10] [10] An S, Shi B N, Jiang M D, Fu B W, Song C Y, Tao P, Shang W and Deng T. 2023. Biological and bioinspired thermal energy regulation and utilization.Chem. Rev.123, 7081–7118.
[11] [11] Goerlitzer E S A, Klupp Taylor R N and Vogel N. 2018. Bioinspired photonic pigments from colloidal self-assembly.Adv. Mater.30, 1706654.
[12] [12] Okoye C O, Jones I, Zhu M M, Zhang Z Z and Zhang D K. 2021. Manufacturing of carbon black from spent tyre pyrolysis oil—A literature review.J. Clean. Prod.279, 123336.
[13] [13] Sun L, Li Z, Su R, Wang Y L, Li Z L, Du B S, Sun Y, Guan P F, Besenbacher F and Yu M. 2018. Phase-transition induced conversion into a photothermal material: quasimetallic WO2.9 nanorods for solar water evaporation and anticancer photothermal therapy.Angew. Chem., Int. Ed.57, 10666–10671.
[14] [14] Ng T W, Yang Q D, Mo H W, Lo M F, Zhang W J and Lee C S. 2013. Wide-spectral photoresponse of black molybdenum oxide photodetector via sub-bandgap electronic transition.Adv. Opt. Mater.1, 699–702.
[15] [15] Teng F R, Tan S C, Fang J B, Zi T Q, Wu D and Li A D. 2024. Robust biomimetic strain sensor based on butterfly wing-derived skeleton structure.Appl. Phys. Lett.125, 163503.
[16] [16] Miyako E, Sugino T, Okazaki T, Bianco A, Yudasaka M and Iijima S. 2013. Self-assembled carbon nanotube honeycomb networks using a butterfly wing template as a multifunctional nanobiohybrid.ACS Nano7, 8736–8742.
[17] [17] He Z W, Zhang W, Wang W L, Tassin M, Gu J J, Liu Q L, Zhu S M, Su H L, Feng C L and Zhang D. 2013. Fabrication of Fe-wings used for micro imprinting with a natural butterfly wing structure byin situcarbothermic reduction.J. Mater. Chem. B1, 1673–1677.
[18] [18] Chen S H, Xiao Y, Xie W, Wang Y H, Hu Z F, Zhang W and Zhao H. 2018. Facile strategy for synthesizing non-stoichiometric monoclinic structured tungsten trioxide (WO3−x) with plasma resonance absorption and enhanced photocatalytic activity.Nanomaterials8, 553.
[19] [19] Ming X, Guo A K, Wang G and Wang X B. 2018. Two-dimensional defective tungsten oxide nanosheets as high performance photo-absorbers for efficient solar steam generation.Sol. Energy Mater. Sol. Cells185, 333–341.
[20] [20] Zhang Y X, Wu D, Zhang Y C, Bian Y C, Wang C W, Li J W, Chu J R and Hu Y L. 2023. Femtosecond laser direct writing of functional stimulus-responsive structures and applications.Int. J. Extrem. Manuf.5, 042012.
[21] [21] Li F et al. 2023. 3D printing of inorganic nanomaterials by photochemically bonding colloidal nanocrystals.Science381, 1468–1474.
[22] [22] Liu S F, Hou Z W, Lin L H, Li F, Zhao Y, Li X Z, Zhang H, Fang H H, Li Z C and Sun H B. 2022. 3D nanoprinting of semiconductor quantum dots by photoexcitation-induced chemical bonding.Science377, 1112–1116.
[23] [23] Stratakis E et al. 2020. Laser engineering of biomimetic surfaces.Mater. Sci. Eng. R. Rep.141, 100562.
[24] [24] Cao X B et al. 2022. Replicating theCynandra opisbutterfly’s structural color for bioinspired bigrating color filters.Adv. Mater.34, 2109161.
[25] [25] Zhang D S, Ranjan B, Tanaka T and Sugioka K. 2020. Carbonized hybrid micro/nanostructured metasurfaces produced by femtosecond laser ablation in organic solvents for biomimetic antireflective surfaces.ACS Appl. Nano Mater.3, 1855–1871.
[26] [26] Amendola V, Amans D, Ishikawa Y, Koshizaki N, Scir S, Compagnini G, Reichenberger S and Barcikowski S. 2020. Room-temperature laser synthesis in liquid of oxide, metaloxide core-shells, and doped oxide nanoparticles.Chem. Eur. J.26, 9206–9242.
[27] [27] Zhang D S, Gkce B and Barcikowski S. 2017. Laser synthesis and processing of colloids: fundamentals and applications.Chem. Rev.117, 3990–4103.
[28] [28] Liao J N, Zhang D S and Li Z G. 2024. Conceptional pure-tungsten metasurfaces based on femtosecond laser nanomanufacturing.Engineering(https://doi.org/10.1016/j.eng.2024.06.018).
[29] [29] Huang J X, Xu K and Xu S L. 2025. Super-resolution laser machining.Int. J. Mach. Tools Manuf.205, 104246.
[30] [30] Haase T A, Chan A, Kihara S, Broderick N G R and Aguergaray C. 2023. Tungsten oxide nanoparticle and aggregate formation through direct femtosecond laser ablation in air.Nano-Struct. Nano-Objects33, 100935.
[31] [31] Liu R J, Zhang D S and Li Z G. 2021. Femtosecond laser induced simultaneous functional nanomaterial synthesis, in situ deposition and hierarchical LIPSS nanostructuring for tunable antireflectance and iridescence applications.J. Mater. Sci. Technol.89, 179–185.
[32] [32] Barcikowski S, Walter J, Hahn A, Koch J, Haloui H, Herrmann T and Gatti A. 2009. Picosecond and femtosecond laser machining may cause health risks related to nanoparticle emission.J. Laser Micro/Nanoeng.4, 159–164.
[33] [33] Shou W, Mahajan B K, Ludwig B, Yu W, Staggs J, Huang X and Pan H. 2017. Low-cost manufacturing of bioresorbable conductors by evaporation–condensation-mediated laser printing and sintering of Zn nanoparticles.Adv. Mater.29, 1700172.
[34] [34] Shou W, Ludwig B, Wang L T, Gong X T, Yu X W, Grigoropoulos C P and Pan H. 2019. Feasibility study of single-crystal Si island manufacturing by microscale printing of nanoparticles and laser crystallization.ACS Appl. Mater. Interfaces11, 34416–34423.
[35] [35] Pfeiffer S, Florio K, Puccio D, Grasso M, Colosimo B M, Aneziris C G, Wegener K and Graule T. 2021. Direct laser additive manufacturing of high performance oxide ceramics: a state-of-the-art review.J. Eur. Ceram. Soc.41, 6087–6114.
[36] [36] Donnelly T, O’Connell G and Lunney J G. 2020. Metal nanoparticle film deposition by femtosecond laser ablation at atmospheric pressure.Nanomaterials10, 2118.
[37] [37] An S, Shang W, Jiang M D, Luo Y N, Fu B W, Song C Y, Tao P and Deng T. 2021. Human hand as a powerless and multiplexed infrared light source for information decryption and complex signal generation.Proc. Natl Acad. Sci. USA118, e2021077118.
[38] [38] An S, Zhu H R, Guo C Z, Fu B W, Song C Y, Tao P, Shang W and Deng T. 2022. Noncontact human-machine interaction based on hand-responsive infrared structural color.Nat. Commun.13, 1446.
[39] [39] Sugioka K and Cheng Y. 2014. Femtosecond laser three-dimensional micro- and nanofabrication.Appl. Phys. Rev.1, 041303.
[40] [40] Semaltianos N G et al. 2008. Nanoparticle formation by the debris produced by femtosecond laser ablation of silicon in ambient air.Mater. Lett.62, 2165–2170.
[41] [41] Zhang D S, Li C X, Xu J T, Liu R J, Duan R, Feng K and Li Z G. 2023. Higher suitability of NbMoTaW over its elemental metals for laser induced periodic surface structure/particleaggregate UV-to-MIR ultrabroadband absorber.Scr. Mater.227, 115276.
[42] [42] Ye X Y et al. 2022. Atomistic observation of temperature-dependent defect evolution within sub-stoichiometric WO3–x catalysts.ACS Appl. Mater. Interfaces14, 2194–2201.
[43] [43] Harilal S S, Farid N, Hassanein A and Kozhevin V M. 2013. Dynamics of femtosecond laser produced tungsten nanoparticle plumes.J. Appl. Phys.114, 203302.
[44] [44] Kautz E J, Zelenyuk A, Gwalani B, Phillips M C and Harilal S S. 2022. Gas-phase oxidation and nanoparticle formation in multi-element laser ablation plumes.Phys. Chem. Chem. Phys.24, 26583–26590.
[45] [45] Heiroth S, Koch J, Lippert T, Wokaun A, Gnther D, Garrelie F and Guillermin M. 2010. Laser ablation characteristics of yttria-doped zirconia in the nanosecond and femtosecond regimes.J. Appl. Phys.107, 014908.
[46] [46] Kautz E J, Yeak J, Bernacki B E, Phillips M C and Harilal S S. 2020. The role of ambient gas confinement, plasma chemistry, and focusing conditions on emission features of femtosecond laser-produced plasmas.J. Anal. At. Spectrom.35, 1574–1586.
[47] [47] Shih C Y, Streubel R, Heberle J, Letzel A, Shugaev M V, Wu C P, Schmidt M, Gkce B, Barcikowski S and Zhigilei L V. 2018. Two mechanisms of nanoparticle generation in picosecond laser ablation in liquids: the origin of the bimodal size distribution.Nanoscale10, 6900–6910.
[48] [48] Shih C Y, Wu C P, Wu H, Shugaev M V and Zhigilei L V. 2018. Atomistic simulations of the generation of nanoparticles in short-pulse laser ablation of metals: effect of background gas and liquid environments.Pulsed Laser Ablation. eds Mihailescu I N and Caricato A P (Jenny Stanford Publishing, New York). pp 425–470.
[49] [49] Shih C Y, Shugaev M V, Wu C P and Zhigilei L V. 2017. Generation of subsurface voids, incubation effect, and formation of nanoparticles in short pulse laser interactions with bulk metal targets in liquid: molecular dynamics study.J. Phys. Chem. C121, 16549–16567.
[50] [50] Zhigilei L V, Lin Z B and Ivanov D S. 2009. Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion.J. Phys. Chem. C113, 11892–11906.
[51] [51] Zuhlke C A, Alexander D R, Bruce J C, Ianno N J, Kamler C A and Yang W Q. 2010. Self assembled nanoparticle aggregates from line focused femtosecond laser ablation.Opt. Express18, 4329–4339.
[52] [52] Odachi G, Sakamoto R, Hara K and Yagi T. 2013. Effect of air on debris formation in femtosecond laser ablation of crystalline Si.Appl. Surf. Sci.282, 525–530.
[53] [53] Lam J, Amans D, Dujardin C, Ledoux G and Allouche A R. 2015. Atomistic mechanisms for the nucleation of aluminum oxide nanoparticles.J. Phys. Chem. A119, 8944–8949.
[54] [54] Lam J, Amans D, Chaput F, Diouf M, Ledoux G, Mary N, Masenelli-Varlot K, Motto-Ros V and Dujardin C. 2014. -Al2O3 nanoparticles synthesised by pulsed laser ablation in liquids: a plasma analysis.Phys. Chem. Chem. Phys.16, 963–973.
[55] [55] Surnev S and Netzer F P. 2022. Tungsten and molybdenum oxide nanostructures: two-dimensional layers and nanoclusters.J. Phys.: Condens. Matter34, 233001.
[56] [56] Mardare C C and Hassel A W. 2019. Review on the versatility of tungsten oxide coatings.Phys. Status Solidia216, 1900047.
[57] [57] Obata K, Kawabata S, Hanada Y, Miyaji G and Sugioka K. 2024. High performance micromachining of sapphire by laser induced plasma assisted ablation (LIPAA) using GHz burst mode femtosecond pulses.Opto-Electron. Sci.3, 230053.
[58] [58] Zeng G L and Zeng M. 2021. Kirchhoff’s current law (KCL).Electric Circuits. eds Zeng G L and Zeng M. (Springer, Cham) pp 31–35.
[59] [59] Chiou B S and Tsai J H. 1999. Antireflective coating for ITO films deposited on glass substrate.J Mater. Sci. Mater. Electron10, 491–495.
[60] [60] Jiang X P et al. 2024. Bicolor regulation of an ultrathin absorber in the mid-wave infrared and long-wave infrared regimes.ACS Photonics11, 218–229.
[61] [61] Kerr D A. 2010. The CIE XYZ and xyY color spaces.Colorimetry11–16.
[62] [62] Velastegui R and Pedersen M. 2021. CMYK-CIELAB color space transformation using machine learning techniques.London Imaging Meet2021, 73–77.
[63] [63] Su F, Xu H, Chen G D, Wang Z H, Sun L N and Wang Z 2019. Improved simple linear iterative clustering algorithm using HSL color space.In Proceedings of the 12th International Conference onIntelligent Robotics and Applications. (Springer, Shenyang). pp 413–425.
[64] [64] Cao T, Lian M, Liu K, Lou X C, Guo Y M and Guo D M. 2022. Wideband mid-infrared thermal emitter based on stacked nanocavity metasurfaces.Int. J. Extrem. Manuf.4, 015402.
[65] [65] Ma C R, Yan J H, Huang Y C, Wang C X and Yang G W. 2018. The optical duality of tellurium nanoparticles for broadband solar energy harvesting and efficient photothermal conversion.Sci. Adv.4, eaas9894.
[66] [66] Xu L R, Tao J C, Li Z G, He G and Zhang D S. 2024. Femtosecond laser ultrafast photothermal exsolution.Int. J. Extrem. Manuf.6, 055002.
[67] [67] Vincent J D, Hodges S E, Vampola J, Stegall M and Pierce G. 2015.Fundamentals of Infrared and Visible Detector Operation and Testing. (John Wiley & Sons, Hoboken).
[68] [68] Zhang X Z et al. 2023. Stamp-like energy harvester and programmable information encrypted display based on fully printable thermoelectric devices.Adv. Mater.35, 2207723.
[69] [69] Wei H et al. 2022. Kirigami-inspired reconfigurable thermal mimetic device.Laser Photon. Rev.16, 2200383.
[70] [70] Kim Y, Kim C and Lee M. 2022. Parallel laser printing of a thermal emission pattern in a phase-change thin film cavity for infrared camouflage and security.Laser Photon. Rev.16, 2100545.
[71] [71] Huang Y, Zhu Y N, Qin B, Zhou Y W, Qin R, Ghosh P, Qiu M and Li Q. 2022. Hierarchical visible-infraredmicrowave scattering surfaces for multispectral camouflage.Nanophotonics11, 3613–3622.
[72] [72] Huang Y, Ma B Z, Pattanayak A, Kaur S, Qiu M and Li Q. 2021. Infrared camouflage utilizing ultrathin flexible largescale high-temperature-tolerant lambertian surfaces.Laser Photon. Rev.15, 2000391.
[73] [73] Bakan G, Ayas S, Serhatlioglu M, Elbuken C and Dana A. 2018. Invisible thin-film patterns with strong infrared emission as an optical security feature.Adv. Opt. Mater.6, 1800613.
[74] [74] Lee G, Jang S, Kim Y B, Cho D, Jeong D, Chae S, Myoung J M, Kim H, Kim S K and Lee J O. 2023. Ultrathin metal film on graphene for percolation-threshold-limited thermal emissivity control.Adv. Mater.35, 2301227.
[75] [75] Deng Z C, Su Y R, Qin W, Wang T, Wang X and Gong R Z. 2022. Nanostructured Ge/ZnS films for multispectral camouflage with low visibility and low thermal emission.ACS Appl. Nano Mater.5, 5119–5127.
[76] [76] Yan J X, Rath A, Wang H Y, Ng Z Q C, Pennycook S J and Chua D H C. 2021. Tungsten suboxide nanoneedles as an effective thermal shield through near-infrared reflection and absorption.J. Phys. Chem. C125, 11115–11123.
[77] [77] Chao L M, Bao L H, Wei W and Tegus O. 2019. A review of recent advances in synthesis, characterization and NIR shielding property of nanocrystalline rare-earth hexaborides and tungsten bronzes.Sol. Energy190, 10–27.
[78] [78] He D Y et al. 2021. Multispectral electromagnetic shielding using ultra-thin metal-metal oxide decorated hybrid nanofiber membranes.Commun. Mater.2, 101.
[79] [79] Araki K and Zhang R Z. 2023. Infrared radiative switching with thermally and electrically tunable transition metal oxidesbased plasmonic grating.Sci. Rep.13, 3702.
[80] [80] Bhandari T R, Bhattarai R P and Adhikari R. 2024. A review on synthesis, structural properties and applications of metal oxide-based thin film thermoelectric materials.J. Mater. Sci.59, 20204–20220.
[81] [81] Muslu E, Eren E and Oksuz A U. 2024. Research progress on flexible WO3 based thin film electrodes for supercapacitor applications: a comprehensive review.Emergent Mater.7, 2205–2236.
[82] [82] Priyanka D, Watanabe R, Fukuhara C, Yamashita H and Verma P. 2024. Design, synthesis, and applications of plasmonic semiconductor WO3−x photocatalyst.Catal. Sci. Technol.14, 4775–4798.
[83] [83] Lee E and Luo T. 2019. Black body-like radiative cooling for flexible thin-film solar cells.Sol. Energy Mater. Sol. Cells194, 222–228.
[84] [84] Nunes D, Pimentel A, Gonalves A, Pereira S, Branquinho R, Barquinha P, Fortunato E and Martins R. 2019. Metal oxide nanostructures for sensor applications.Semicond. Sci. Technol.34, 043001.
Get Citation
Copy Citation Text
Liu Ruijie, Zhang Dongshi, Li Zhuguo. Femtosecond laser subtractive/additive-integrated biomimetic manufacturing for visible/infrared encryption and stimuli-responsive infrared decryption[J]. International Journal of Extreme Manufacturing, 2025, 7(4): 45009
Category:
Received: Dec. 11, 2024
Accepted: Sep. 9, 2025
Published Online: Sep. 9, 2025
The Author Email: