Laser & Optoelectronics Progress, Volume. 58, Issue 12, 1200001(2021)
Single-Molecule Localization Super-Resolution Microscopy and Its Applications
[3] Jacquemet G, Carisey A F, Hamidi H et al. The cell biologist's guide to super-resolution microscopy[J]. Journal of Cell Science, 133, jcs240713(2020).
[5] Klar T A, Jakobs S, Dyba M et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission[J]. Proceedings of the National Academy of Sciences, 97, 8206-8210(2000).
[8] Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 3, 793-795(2006).
[9] Yang J Y, Pan L T, Hu F et al. Stochastic optical reconstruction microscopy and its application[J]. Infrared and Laser Engineering, 46, 1103008(2017).
[10] Betzig E, Patterson G H, Sougrat R et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 313, 1642-1645(2006).
[12] Miller H, Zhou Z K, Shepherd J et al. Single-molecule techniques in biophysics: a review of the progress in methods and applications[J]. Reports on Progress in Physics, 81, 024601(2018).
[13] Li Y Z, Li C K, Hao X et al. Review and prospect for single molecule localization microscopy[J]. Laser & Optoelectronics Progress, 57, 240002(2020).
[15] Hinterdorfer P, Oijen A. Handbook of single-molecule biophysics[M], 95-127(2009).
[18] Kay S M. Fundamentals of statistical signal processing[M], 83-180(1993).
[22] Abraham A V, Ram S, Chao J et al. Quantitative study of single molecule location estimation techniques[J]. Optics Express, 17, 23352-23373(2009).
[26] Marsh R J, Pfisterer K, Bennett P et al. Artifact-free high-density localization microscopy analysis[J]. Nature Methods, 15, 689-692(2018).
[27] Mailfert S, Touvier J, Benyoussef L et al. A theoretical high-density nanoscopy study leads to the design of UNLOC, a parameter-free algorithm[J]. Biophysical Journal, 115, 565-576(2018).
[29] Huang B, Wang W, Bates M et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy[J]. Science, 319, 810-813(2008).
[33] Coelho S, Baek J, Graus M S et al. Ultraprecise single-molecule localization microscopy enablesin situ distance measurements in intact cells[J]. Science Advances, 6, eaay8271(2020).
[35] Sage D, Pham T A, Babcock H et al. Super-resolution fight club: assessment of 2D and 3D single-molecule localization microscopy software[J]. Nature Methods, 16, 387-395(2019).
[38] Bernhem K, Brismar H. SMLocalizer, a GPU accelerated ImageJ plugin for single molecule localization microscopy[J]. Bioinformatics, 34, 137-138(2018).
[42] Pereira P M, Albrecht D, Culley S et al. Fix your membrane receptor imaging: actin cytoskeleton and CD4 membrane organization disruption by chemical fixation[J]. Frontiers in Immunology, 10, 675(2019).
[45] Kaplan C, Ewers H. Optimized sample preparation for single-molecule localization-based superresolution microscopy in yeast[J]. Nature Protocols, 10, 1007-1021(2015).
[46] Hamers-Casterman C, Atarhouch T, Muyldermans S et al. Naturally occurring antibodies devoid of light chains[J]. Nature, 363, 446-448(1993).
[49] Virant D, Traenkle B, Maier J et al. A peptide tag-specific nanobody enables high-quality labeling for dSTORM imaging[J]. Nature Communications, 9, 930(2018).
[53] Auer A, Strauss M T, Schlichthaerle T et al. Fast, background-free DNA-PAINT imaging using FRET-based probes[J]. Nano Letters, 17, 6428-6434(2017).
[54] Pan L T, Hu F, Zhang X Z et al. Multicolor single-molecule localization super-resolution microscopy[J]. Acta Optica Sinica, 37, 0318010(2017).
[58] Bossi M, Fölling J, Belov V N et al. Multicolor far-field fluorescence nanoscopy through isolated detection of distinct molecular species[J]. Nano Letters, 8, 2463-2468(2008).
[67] Cnossen J, Hinsdale T, Thorsen R Ø et al. Localization microscopy at doubled precision with patterned illumination[J]. Nature Methods, 17, 59-63(2020).
[68] Chen F, Tillberg P W, Boyden E S. Expansion microscopy[J]. Science, 347, 543-548(2015).
[70] Pavani S R P, Thompson M A, Biteen J S et al. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function[J]. Proceedings of the National Academy of Sciences of the United States of America, 106, 2995-2999(2009).
[72] Li Y M, Mund M, Hoess P et al. Real-time 3D single-molecule localization using experimental point spread functions[J]. Nature Methods, 15, 367-369(2018).
[75] Douglass K M, Sieben C, Archetti A et al. Super-resolution imaging of multiple cells byoptimised flat-field epi-illumination[J]. Nature Photonics, 10, 705-708(2016).
[76] Zhao Z Y, Xin B, Li L C et al. High-power homogeneous illumination for super-resolution localization microscopy with large field-of-view[J]. Optics Express, 25, 13382-13395(2017).
[80] Li L C, Xin B, Kuang W B et al. Divide and conquer: real-time maximum likelihood fitting of multiple emitters for super-resolution localization microscopy[J]. Optics Express, 27, 21029-21049(2019).
[84] Mlodzianoski M J, Cheng-Hathaway P J, Bemiller S M et al. Active PSF shaping and adaptive optics enable volumetric localization microscopy through brain sections[J]. Nature Methods, 15, 583-586(2018).
[86] Xu F, Ma D H, MacPherson K P et al. Three-dimensional nanoscopy of whole cells and tissues with in situ point spread function retrieval[J]. Nature Methods, 17, 531-540(2020).
[87] Huisken J, Swoger J, del Bene F et al. Optical sectioning deep inside live embryos by selective plane illumination microscopy[J]. Science, 305, 1007-1009(2004).
[88] Crossman D J, Hou Y F, Jayasinghe I et al. Combining confocal and single molecule localisation microscopy: a correlative approach to multi-scale tissue imaging[J]. Methods, 88, 98-108(2015).
[89] Dudok B, Barna L, Ledri M et al. Cell-specific STORM super-resolution imaging reveals nanoscale organization of cannabinoid signaling[J]. Nature Neuroscience, 18, 75-86(2015).
[98] Hoffman D P, Shtengel G, Xu C S et al. Correlative three-dimensional super-resolution and block face electron microscopy of whole vitreously frozen cells[J]. Science, 367, eaaz5357(2020).
[102] Dong C, Loy C C, He K M et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 295-307(2016).
[106] Kim T, Moon S, Xu K. Information-rich localization microscopy through machine learning[J]. Nature Communications, 10, 1996(2019).
[107] Nehme E, Freedman D, Gordon R et al. DeepSTORM3D: dense 3D localization microscopy and PSF design by deep learning[J]. Nature Methods, 17, 734-740(2020).
[109] Ripley B D. Modelling spatial patterns[J]. Journal of the Royal Statistical Society: Series B (Methodological), 39, 172-192(1977).
[111] Besag J. Discussion on Dr Ripley’s paper[J]. Journal of the Royal Statistical Society: Series B (Methodological), 39, 192-212(1977).
[112] Ehrlich M, Boll W, van Oijen A et al. Endocytosis by random initiation and stabilization of clathrin-coated pits[J]. Cell, 118, 591-605(2004).
[113] Burgert A, Schlegel J, Bécam J et al. Characterization of plasma membrane ceramides by super-resolution microscopy[J]. Angewandte Chemie, 56, 6131-6135(2017).
[118] Dixon P M. Ripley’s K function[M](2014).
[124] Rubin-Delanchy P, Burn G L, Griffié J et al. Bayesian cluster identification in single-molecule localization microscopy data[J]. Nature Methods, 12, 1072-1076(2015).
[126] Ester M, Kriegel H P, Sander J et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]. //Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, August 2, 1996, Virigina, USA., 96, 226-231(1996).
[128] Mazouchi A, Milstein J N. Fastoptimized cluster algorithm for localizations (FOCAL): a spatial cluster analysis for super-resolved microscopy[J]. Bioinformatics, 32, 747-754(2016).
[132] Platre M P, Bayle V, Armengot L et al. Developmental control of plant Rho GTPase nano-organization by the lipid phosphatidylserine[J]. Science, 364, 57-62(2019).
[133] Wei M, Fan X Y, Ding M et al. Nuclear actin regulates inducible transcription by enhancing RNA polymerase II clustering[J]. Science Advances, 6, eaay6515(2020).
[135] Golfetto O, Wakefield D L, Cacao E E et al. A platform to enhance quantitative single molecule localization microscopy[J]. Journal of the American Chemical Society, 140, 12785-12797(2018).
[139] Zanacchi F C, Manzo C, Alvarez A S et al. A DNA origami platform for quantifying protein copy number in super-resolution[J]. Nature Methods, 14, 789-792(2017).
[140] Baumgart F, Arnold A M, Leskovar K et al. Varying label density allows artifact-free analysis of membrane-protein nanoclusters[J]. Nature Methods, 13, 661-664(2016).
[141] Bálint Š, Lopes F B, Davis D M. A nanoscale reorganization of the IL-15 receptor is triggered by NKG2D in a ligand-dependent manner[J]. Science Signaling, 11, eaal3606(2018).
[145] Pan L T, Zhang P, Hu F et al. Hypotonic stress induces fast, reversible degradation of the vimentin cytoskeleton via intracellular calcium release[J]. Advanced Science, 6, 1900865(2019).
[146] Kanchanawong P, Shtengel G, Pasapera A M et al. Nanoscale architecture of integrin-based cell adhesions[J]. Nature, 468, 580-584(2010).
[147] Nahidiazar L, Kreft M, van den Broek B et al. The molecular architecture of hemidesmosomes, as revealed with super-resolution microscopy[J]. Journal of Cell Science, 128, 3714-3719(2015).
[148] Bouissou A, Proag A, Bourg N et al. Podosome force generation machinery: a local balance between protrusion at the core and traction at the ring[J]. ACS Nano, 11, 4028-4040(2017).
[149] Shi X Y, Garcia G, van de Weghe J C et al. Super-resolution microscopy reveals that disruption of ciliary transition-zone architecture causes Joubert syndrome[J]. Nature Cell Biology, 19, 1178-1188(2017).
[159] French J B, Jones S A, Deng H et al. Spatial colocalization and functional link of purinosomes with mitochondria[J]. Science, 351, 733-737(2016).
[162] Bintu B, Mateo L J, Su J H et al. Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells[J]. Science, 362, eaau1783(2018).
[165] Yan R, Chen K, Xu K. Probing nanoscale diffusional heterogeneities in cellular membranes through multidimensional single-molecule and super-resolution microscopy[J]. Journal of the American Chemical Society, 142, 18866-18873(2020).
Get Citation
Copy Citation Text
Jianyu Yang, Hao Dong, Fulin Xing, Fen Hu, Leiting Pan, Jingjun Xu. Single-Molecule Localization Super-Resolution Microscopy and Its Applications[J]. Laser & Optoelectronics Progress, 2021, 58(12): 1200001
Category: Reviews
Received: May. 2, 2021
Accepted: May. 19, 2021
Published Online: Jun. 18, 2021
The Author Email: Pan Leiting (plt@nankai.edu.cn)