Chinese Journal of Lasers, Volume. 50, Issue 22, 2209001(2023)

Photographic Image Enhancement for Single-Shot X-Ray Radiograph via Ultrafast Laser

Liping Tang1,2, Yao Wang3, Genbai Chu4, Fengxiao Li1,2, Liang Wang3, Rifeng Zhou1,2、*, and Bi He3、**
Author Affiliations
  • 1ICT Research Center, Key Lab of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
  • 2Engineering Research Center of Industrial Computed Tomography Nondestructive Testing, Ministry of Education, Chongqing University, Chongqing 400044, China
  • 3Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China
  • 4Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China
  • show less
    References(35)

    [1] Willey T M, Champley K, Hodgin R et al. X-ray imaging and 3D reconstruction of in-flight exploding foil initiator flyers[J]. Journal of Applied Physics, 119, 235901(2016).

    [2] Zhou W M, Yu M H, Zhang T K et al. High-resolution X-ray backlight radiography using picosecond petawatt laser[J]. Chinese Journal of Lasers, 47, 0500010(2020).

    [3] Suzuki-Vidal F, Clayson T, Stehlé C et al. First radiative shock experiments on the SG-II laser[J]. High Power Laser Science and Engineering, 9, e27(2021).

    [4] Li M, Yao T, Yang Z H et al. Designing a toroidal crystal for monochromatic X-ray imaging of a laser-produced He-like plasma[J]. High Power Laser Science and Engineering, 10, e37(2022).

    [5] Chang Z Q, Zhang R Q, Thibault J B et al. Modeling and pre-treatment of photon-starved CT data for iterative reconstruction[J]. IEEE Transactions on Medical Imaging, 36, 277-287(2017).

    [6] Wang R R, Chen W M, Mao C S et al. Laser-produced plasma He-alpha source for pulse radiography[J]. Chinese Optics Letters, 7, 156-158(2009).

    [7] Shui M, Xi T, Yan Y H et al. Laser-plasma jet driven sub-millimeter diameter aluminum flyer and its gesture diagnosis[J]. Acta Physica Sinica, 71, 095201(2022).

    [8] Chu G B, Yu M H, Shui M et al. Experimental technique for dynamic fragmentation of materials via indirect drive by high-intensity laser[J]. Acta Physica Sinica, 69, 026201(2020).

    [9] Liu S X, Long W, He L et al. Retinex-based fast algorithm for low-light image enhancement[J]. Entropy, 23, 746(2021).

    [10] Yakno M, Mohamad-Saleh J, Ibrahim M Z. Dorsal hand vein image enhancement using fusion of CLAHE and fuzzy adaptive gamma[J]. Sensors, 21, 6445(2021).

    [11] Kumar D, Solanki A K, Ahlawat A K. Luminosity control and contrast enhancement of digital mammograms using combined application of adaptive gamma correction and DWT-SVD[J]. Journal of Sensors, 2022, 4433197(2022).

    [12] Kim Y T. Contrast enhancement using brightness preserving bi-histogram equalization[J]. IEEE Transactions on Consumer Electronics, 43, 1-8(1997).

    [13] Wang X W, Chen L X. Contrast enhancement using feature-preserving bi-histogram equalization[J]. Signal, Image and Video Processing, 12, 685-692(2018).

    [14] Zhang W D, Dong L L, Zhang T et al. Enhancing underwater image via color correction and Bi-interval contrast enhancement[J]. Signal Processing: Image Communication, 90, 116030(2021).

    [15] Tang J R, Mat Isa N A. Bi-histogram equalization using modified histogram bins[J]. Applied Soft Computing, 55, 31-43(2017).

    [16] Madmad T, De Vleeschouwer C. Bilateral histogram equalization for X-ray image tone mapping[C], 3507-3511(2019).

    [17] Sahu S M, Singh A K, Ghrera S P et al. An approach for de-noising and contrast enhancement of retinal fundus image using CLAHE[J]. Optics & Laser Technology, 110, 87-98(2019).

    [18] Sundaram M, Ramar K, Arumugam N et al. Histogram modified local contrast enhancement for mammogram images[J]. Applied Soft Computing, 11, 5809-5816(2011).

    [19] Li L L, Si Y J, Jia Z H. Medical image enhancement based on CLAHE and unsharp masking in NSCT domain[J]. Journal of Medical Imaging and Health Informatics, 8, 431-438(2018).

    [20] Garg D, Garg N K, Kumar M. Underwater image enhancement using blending of CLAHE and percentile methodologies[J]. Multimedia Tools and Applications, 77, 26545-26561(2018).

    [21] Chang Y K, Jung C, Ke P et al. Automatic contrast-limited adaptive histogram equalization with dual gamma correction[J]. IEEE Access, 6, 11782-11792(2018).

    [22] Parihar A S, Verma O P, Khanna C. Fuzzy-contextual contrast enhancement[J]. IEEE Transactions on Image Processing, 26, 1810-1819(2017).

    [23] Xie S J, Lu Y, Yoon S et al. Intensity variation normalization for finger vein recognition using guided filter based singe scale retinex[J]. Sensors, 15, 17089-17105(2015).

    [24] Wu X M, Sun Y Q, Kimura A et al. Reflectance-oriented probabilistic equalization for image enhancement[C], 1835-1839(2021).

    [25] Fu Q T, Jung C, Xu K Q. Retinex-based perceptual contrast enhancement in images using luminance adaptation[J]. IEEE Access, 6, 61277-61286(2018).

    [26] Ancuti C O, Ancuti C. Single image dehazing by multi-scale fusion[J]. IEEE Transactions on Image Processing, 22, 3271-3282(2013).

    [27] Mertens T, Kautz J, Van Reeth F. Exposure fusion: a simple and practical alternative to high dynamic range photography[J]. Computer Graphics Forum, 28, 161-171(2009).

    [28] Joseph J, Sivaraman J, Periyasamy R et al. An objective method to identify optimum clip-limit and histogram specification of contrast limited adaptive histogram equalization for MR images[J]. Biocybernetics and Biomedical Engineering, 37, 489-497(2017).

    [29] Pisano E D, Zong S Q, Hemminger B M et al. Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms[J]. Journal of Digital Imaging, 11, 193(1998).

    [30] Rodriguez-Molares A, Rindal O M H, D'Hooge J et al. The generalized contrast-to-noise ratio: a formal definition for lesion detectability[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 67, 745-759(2020).

    [31] Akagi M, Nakamura Y, Higaki T et al. Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT[J]. European Radiology, 29, 6163-6171(2019).

    [32] Zhang A X, He Y H, Wu L G et al. Tabletop X-ray ghost imaging with ultra-low radiation[J]. Optica, 5, 374-377(2018).

    [33] Parsons M S, Sharma A, Hildebolt C. Using correlative properties of neighboring pixels to enhance contrast-to-noise ratio of abnormal hippocampus in patients with intractable epilepsy and mesial temporal sclerosis[J]. Academic Radiology, 26, e1-e8(2019).

    [34] Rodgers G, Schulz G, Deyhle H et al. Optimizing contrast and spatial resolution in hard X-ray tomography of medically relevant tissues[J]. Applied Physics Letters, 116, 023702(2020).

    [35] Tao S Z, Rajendran K, Zhou W et al. Improving iodine contrast to noise ratio using virtual monoenergetic imaging and prior-knowledge-aware iterative denoising (mono-PKAID)[J]. Physics in Medicine and Biology, 64, 105014(2019).

    Tools

    Get Citation

    Copy Citation Text

    Liping Tang, Yao Wang, Genbai Chu, Fengxiao Li, Liang Wang, Rifeng Zhou, Bi He. Photographic Image Enhancement for Single-Shot X-Ray Radiograph via Ultrafast Laser[J]. Chinese Journal of Lasers, 2023, 50(22): 2209001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: holography and information processing

    Received: Feb. 2, 2023

    Accepted: Mar. 15, 2023

    Published Online: Nov. 7, 2023

    The Author Email: Zhou Rifeng (zhou65112401@cqu.edu.cn), He Bi (hebi@caep.cn)

    DOI:10.3788/CJL230486

    Topics