Laser Technology, Volume. 43, Issue 5, 676(2019)

Nondestructive detection of apple defect combining optical fiber spectra with pattern recognition

MENG Qinglong1,2、*, ZHANG Yan2, and SHANG Jing1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(20)

    [1] [1] GUO W Ch, WANG M H, GU J S, et al. Identification of bruised kiwifruits during storage by near infrared spectroscopy and extreme learning machine[J]. Optics and Precision Engineering, 2013, 21(10): 2720-2727 (in Chinese).

    [2] [2] ZHENG C Y, GUO Zh H, JIN L. Measurement of total viable count on chilled mutton surface based on hyperspectral imaging technique[J]. Laser Technology, 2015, 39(2): 284-288 (in Chinese).

    [3] [3] ZOU X B, SHEN T T, SHI J Y, et al. Discrimination on maturity of plums based on hyperspectral imaging information[J]. Modern Food Science and Technology, 2016, 32(4): 235-240 (in Chinese).

    [4] [4] ZHAO F, DONG J L, GUO W Ch. Effect of spectral extraction regions in hyperspectral images on the precision in determining the sugar content of kiwifruits [J]. Modern Food Science and Technology, 2016, 32(4): 223-228 (in Chinese).

    [5] [5] GUO W Ch, ZHAO F, DONG J L. Nondestructive measurement of soluble solids content of kiwifruits using near-infrared hyperspectral imaging[J]. Food Analytical Methods, 2016, 9(1): 38-47.

    [6] [6] LI L L, WANG B, ZHANG X H, et al. Discrimination on maturity of plums based on hyperspectral imaging information[J]. Modern Food Science and Technology, 2017, 33(12): 228-232 (in Chinese).

    [7] [7] ERKINBAEV C, HENDERSON K, PALIWAL J. Discrimination of gluten-free oats from contaminants using near infrared hyperspectral imaging technique[J]. Food Control, 2017, 80: 97-203.

    [8] [8] MO C, KIM G, KIM M S, et al. Fluorescence hyperspectral imaging technique for foreign substance detection on fresh-cut lettuce[J]. Journal of the Science of Food & Agriculture, 2017, 97(12): 3985-3993.

    [9] [9] SONG X Sh, CHEN G Q, ZHU Zh W, et al. Determination of vo-lume fraction of acid in Chinese aged liquor by 3-D fluorescence spectrometry[J]. Laser Technology, 2018, 42(4):531-535 (in Chin-ese).

    [10] [10] YIN X H, JIANG Y, L B Ch, et al. Quantitative analysis of 2-mercaptobenzothiazole based on terahertz time-domain spectroscopy[J]. Laser Technology, 2019,43(1):1-9 (in Chinese).

    [11] [11] PU H B, LIU D, WANG L, et al. Soluble solids content and pH prediction and maturity discrimination of lychee fruits using visible and near infrared hyperspectral imaging[J]. Food Analytical Methods, 2016, 9(1): 235-244.

    [12] [12] SIEDLISKA A, BARANOWSKI P, ZUBIK M, et al. Detection of pits in fresh and frozen cherries using a hyperspectral system in transmittance mode[J]. Journal of Food Engineering, 2017, 215: 61-71.

    [13] [13] LIU Y D, WU M M, LI Y F, et al. Comparision of reflection and diffuse transmission for detecting solid soluble contents and ratio of sugar and acid in apples by on-line vis/NIR spectroscopy[J]. Spectroscopy and Spectral Analysis, 2017, 37(8): 2424-2429 (in Ch-inese).

    [14] [14] LIU Y D, XU H, SUN X D, et al. Non-destructive measurement of tomato maturity by near-infrared diffuse transmission spectroscopy[J]. Laser Technology, 2019,43(1): 25-29 (in Chinese).

    [15] [15] ZHAO J, PENG Y K, ZHAO S W, et al. Detection of defects in apples based on hyperspectral imaging technology[J]. Journal of Food Safety and Quality, 2012, 3(6): 681-684 (in Chinese).

    [16] [16] TIAN Y W, CHENG Y, WANG X Q, et al. Recognition method of insect damage and stem/calyx on apple based on hyperspectral imaging[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(4): 325-331 (in Chinese).

    [17] [17] ZHANG B F, YUAN L B, ZHANG B X. Study on prediction total acid and soluble sugar of tomato juice by near infrared optical fiber spectrometer technique[J]. Spectroscopy and Spectral Analysis, 2014, 34(2): 350-353 (in Chinese).

    [18] [18] NI L J, ZHANG L G. Basic chemometrics and its application[M]. Shanghai: East China University of Science and Technology Press, 2011: 64-69(in Chinese).

    [19] [19] LI Y, GUO J X, MUHETAER M, et al. Effect of spectral data pretreatment on visible/near infrared spectroscopy model of soluble so-lids content of apples[J]. Northern Horticulture, 2016, 20: 1-4 (in Chinese).

    [20] [20] HUANG W Q, CHEN L P, LI J B, et al. Effective wavelengths determination for detection of slight bruises on apples based on hyperspectral imaging[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(1): 272-277 (in Chinese).

    Tools

    Get Citation

    Copy Citation Text

    MENG Qinglong, ZHANG Yan, SHANG Jing. Nondestructive detection of apple defect combining optical fiber spectra with pattern recognition[J]. Laser Technology, 2019, 43(5): 676

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 15, 2018

    Accepted: --

    Published Online: Sep. 9, 2019

    The Author Email: MENG Qinglong (scumql@163.com)

    DOI:10.7510/jgjs.issn.1001-3806.2019.05.017

    Topics