Acta Optica Sinica, Volume. 45, Issue 9, 0906004(2025)

Phase Noise Compensation Scheme Based on End-to-End Deep Learning

Rui Huang1, Qinghua Tian1、*, Zuxian Li1, Yiqun Pan1, Fu Wang1, Feng Tian1, Sitong Zhou1, Yongjun Wang1, and Xiangjun Xin2
Author Affiliations
  • 1School of Electronic Engineering, State Key Laboratory of Information Photonics and Optical Communications, Beijing Key Laboratory of Space-Ground Interconnection and Convergence, Beijing University of Posts and Telecommunication, Beijing 100876, China
  • 2School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
  • show less
    Figures & Tables(18)
    Flow chart of the proposed scheme
    Structure of trainable BPS
    CReLU, photonic Sigmoid, and standard Sigmoid function curves
    Hidden layer outputs of Rx-NN with different activation functions. (a) ReLU function; (b) photonic Sigmoid function
    Schematic of simulation system
    Results of proposed GCS scheme under different conditions. (a) RSN=17 dB, Δv=100 kHz; (b) RSN=13 dB, Δv=600 kHz
    GMI curves of various shemes at different laser linewidths
    BER curves of QAM, proposed Geo-E2E (with CD), and BTB at different OSNRs
    GMI curves of trainable BPS and regular BPS at different linewidths
    At 1200 km, Q-factor curves of 64QAM and proposed GeoPCS-E2E (with CD) at different input powers
    GMI curves of various schemes at 800 km, 1040 km, and 1200 km under different laser linewidths. (a) 800 km; (b) 1040 km; (c) 1200 km
    Training epochs and GMI performance for systems with different numbers of hidden layers
    Analysis of key parameters for photonic Sigmoid functions. (a) Analysis of A1 and A2; (b) analysis of d
    GMI performance of different models
    • Table 1. System parameters for E2EDL training

      View table

      Table 1. System parameters for E2EDL training

      ParameterContent
      Modulation order6
      Epochs1000
      Batches per epoch500
      Batchsize per epoch10000
      Optimization algorithmAdam
      Learning rate0.001
      Test phase60
      Cumulative sum length128
      Symbol rate32 Gbaud
    • Table 2. Parameters for simulation channel

      View table

      Table 2. Parameters for simulation channel

      ParameterContent
      Dispersion parameter17 ps/(nm·km)
      Fiber length1200 km
      Baud rate32 Gbaud
      Optical carrier wavelength1550 nm
    • Table 3. Parameters for split-step Fourier method

      View table

      Table 3. Parameters for split-step Fourier method

      ParameterContent
      Transmitter SNR25 dB
      Span length80 km
      SSFM steps per span80
      Attenuation0.2 dB/km
      Dispersion17 dB/(nm·km)
      Kerr parameter1.2 W-1·km-1
      EDFA noise figure5 dB
    • Table 4. GMI performance for different structure models

      View table

      Table 4. GMI performance for different structure models

      ModelConstellation shapeActivation functionCPRGMI /(bit/symbol)
      Model-1GeoPCSPhotonic SigmoidTrainable BPS5.34
      Model-2GCSPhotonic SigmoidTrainable BPS5.24
      Model-3GCSPhotonic SigmoidRegular BPS5.17
      Model-4GCSReLUTrainable BPS5.20
      Model-5GCSReLURegular BPS5.08
    Tools

    Get Citation

    Copy Citation Text

    Rui Huang, Qinghua Tian, Zuxian Li, Yiqun Pan, Fu Wang, Feng Tian, Sitong Zhou, Yongjun Wang, Xiangjun Xin. Phase Noise Compensation Scheme Based on End-to-End Deep Learning[J]. Acta Optica Sinica, 2025, 45(9): 0906004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Jan. 4, 2025

    Accepted: Mar. 11, 2025

    Published Online: May. 20, 2025

    The Author Email: Qinghua Tian (tianqh@bupt.edu.cn)

    DOI:10.3788/AOS250439

    CSTR:32393.14.AOS250439

    Topics