Frontiers of Optoelectronics, Volume. 15, Issue 2, 12200(2022)
Circuit-level convergence of electronics and photonics: basic concepts and recent advances
[1] [1] Kish, F., Lal, V., Evans, P., Corzine, S.W., Ziari, M., Butrie, T., Reffle, M., Tsai, H.S., Dentai, A., Pleumeekers, J., Missey, M., Fisher, M., Murthy, S., Salvatore, R., Samra, P., Demars, S., Kim, N., James, A., Hosseini, A., Studenkov, P., Lauermann, M., Going, R., Lu, M., Zhang, J., Tang, J., Bostak, J., Vallaitis, T., Kuntz, M., Pavinski, D., Karanicolas, A., Behnia, B., Engel, D., Khayam, O., Modi, N., Chitgarha, M.R., Mertz, P., Ko, W., Maher, R., Osenbach, J., Rahn, J.T., Sun, H., Wu, K.T., Mitchell, M., Welch, D.: System-on-chip photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 24(1), 1–20 (2018)
[2] [2] Sun, C., Wade, M.T., Lee, Y., Orcutt, J.S., Alloatti, L., Georgas, M.S., Waterman, A.S., Shainline, J.M., Avizienis, R.R., Lin, S., Moss, B.R., Kumar, R., Pavanello, F., Atabaki, A.H., Cook, H.M., Ou, A.J., Leu, J.C., Chen, Y.H., Asanovic, K., Ram, R.J., Popovic, M.A., Stojanovic, V.M.: Single-chip microprocessor that communicates directly using light. Nature 528(7583), 534–538 (2015)
[3] [3] Peng, H., Nahmias, M.A., Lima, T.F., Tait, A.N., Shastri, B.J.: Neuromorphic photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 24(6), 1–15 (2018)
[4] [4] Buscaino, B., Taylor, B.D., Kahn, J.M.: Multi-Tb/s-per-fiber coherent co-packaged optical interfaces for data center switches. J. Lightwave Technol. 37(13), 3401–3412 (2019)
[5] [5] Rogers, C., Piggott, A.Y., Thomson, D.J., Wiser, R.F., Opris, I.E., Fortune, S.A., Compston, A.J., Gondarenko, A., Meng, F., Chen, X., Reed, G.T., Nicolaescu, R.: A universal 3D imaging sensor on a silicon photonics platform. Nature 590(7845), 256–261 (2021)
[6] [6] Zheng, S.N., Zou, J., Cai, H., Song, J.F., Chin, L.K., Liu, P.Y., Lin, Z.P., Kwong, D.L., Liu, A.Q.: Microring resonator-assisted Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution. Nat. Commun. 10(1), 2349 (2019)
[7] [7] Kimerling, L.: Electronic-photonic convergence on silicon. In: IEEE International Conference on Group IV Photonics. IEEE, 1–7 (2008)
[8] [8] Fahrenkopf, N.M., McDonough, C., Leake, G.L., Su, Z., Timurdogan, E., Coolbaugh, D.D.: The AIM photonics MPW: a highly accessible cutting edge technology for rapid prototyping of photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 25(5), 1–6 (2019)
[9] [9] Greig, W.: Integrated Circuit Packaging, Assembly and Interconnections. Berlin: Springer, 62–64 (2007)
[10] [10] Churchman, C.W., Ackoff, R.L.: Purposive behavior and cybernetics. Soc. Forces 29(1), 32–39 (1950)
[11] [11] Wiener, N.: Cybernetics: or Control and Communication in the Animal and the Machine. Cambridge: MIT Press (1948)
[12] [12] Tsien, H.S.: Engineering Cybernetics. McGraw-Hill: New York (1954)
[13] [13] Enz, C.C., Temes, G.C.: Circuit techniques for reducing the effects of Op-Amp imperfections: autozeroing, correlated double sampling, and chopper stabilization. Proc. IEEE 84(11), 1584–1614 (1996)
[14] [14] Enz, C.C., Vittoz, E.A., Krummenacher, F.: A CMOS chopper amplifier. IEEE J. Solid-State Circuits 22(3), 335–342 (1987)
[15] [15] Doany, F., Budd, R., Schares, L., Huynh, T., Wood, M., Kuchta, D., Dupuis, N., Schow, C., Lee, B.M., Sigmund, M.W., Liow, R., Luo, L., Lo, G.: A four-channel silicon photonic carrier with flip-chip integrated semiconductor optical amplifier (SOA) array providing >10-dB gain. In: Proceedings of Electron. Components Technology Conference. IEEE, 1061–1068 (2016)
[16] [16] Park, H., Fang, A., Kodama, S., Bowers, J.: Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells. Opt. Express 13(23), 9460–9464 (2005)
[17] [17] Justice, J., Bower, C., Meitl, M., Mooney, M.B., Gubbins, M.A., Corbett, B.: Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers. Nat. Photonics 6(9), 610–614 (2012)
[18] [18] Liu, A.Y., Bowers, J.: Photonic integration with epitaxial III–V on silicon. IEEE J. Sel. Top. Quantum Electron. 24(6), 1–12 (2018)
[19] [19] Idjadi, M.H., Aflatouni, F.: Integrated Pound-Drever-Hall laser stabilization system in silicon. Nat. Commun. 8(1), 1209 (2017)
[20] [20] Zhan, C., Ki, W.: Output-capacitor-free adaptively biased lowdropout regulator for system-on-chips. IEEE Trans. Circ. Syst. 57(5), 1017–1028 (2010)
[21] [21] Bellegarde, C., Pargon, E., Sciancalepore, C., Petit-Etienne, C., Hugues, V., Robin-Brosse, D., Hartmann, J.M., Lyan, P.: Improvement of sidewall roughness of submicron SOI waveguides by hydrogen plasma and annealing. IEEE Photonics Technol. Lett. 30(7), 591–594 (2018)
[22] [22] Roeloffzen, C.G.H., Hoekman, M., Klein, E.J., Wevers, L.S., Timens, R.B., Marchenko, D., Geskus, D., Dekker, R., Alippi, A., Grootjans, R., van Rees, A., Oldenbeuving, R.M., Epping, J.P., Heideman, R.G., Worhoff, K., Leinse, A., Geuzebroek, D., Schreuder, E., van Dijk, P.W.L., Visscher, I., Taddei, C., Fan, Y., Taballione, C., Liu, Y., Marpaung, D., Zhuang, L., Benelajla, M., Boller, K.J.: Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview. IEEE J. Sel. Top. Quantum Electron. 24(4), 1–21 (2018)
[23] [23] Zhang, G., Xu, D.X., Grinberg, Y., Liboiron-Ladouceur, O.: Topological inverse design of nanophotonic devices with energy constraint. Opt. Express 29(8), 12681–12695 (2021)
[24] [24] Haffner, C., Heni, W., Fedoryshyn, Y., Niegemann, J., Melikyan, A., Elder, D.L., Baeuerle, B., Salamin, Y., Josten, A., Koch, U., Hoessbacher, C., Ducry, F., Juchli, L., Emboras, A., Hillerkuss, D., Kohl, M., Dalton, L.R., Hafner, C., Leuthold, J.: All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale. Nat. Photonics 9(8), 525–528 (2015)
[25] [25] Patel, D., Ghosh, S., Chagnon, M., Samani, A., Veerasubramanian, V., Osman, M., Plant, D.V.: Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator. Opt. Express 23(11), 14263–14287 (2015)
[26] [26] Lu, Z., Jhoja, J., Klein, J., Wang, X., Liu, A., Flueckiger, J., Pond, J., Chrostowski, L.: Performance prediction for silicon photonics integrated circuits with layout-dependent correlated manufacturing variability. Opt. Express 25(9), 9712–9733 (2017)
[27] [27] ünlü, M.S., Strite, S.: Resonant cavity enhanced photonic devices. J. Appl. Phys. 78(2), 607–639 (1995)
[28] [28] Sakib, M., Liao, P., Kumar, R., Huang, D., Su, G., Ma, C., Rong, H. A.: 112 Gb/s all-silicon micro-ring photodetector for datacom applications. In: Proceedings of Opt. Fiber Commun. Conf. Post dead-line Papers. IEEE, Paper Th4A.2 (2020)
[29] [29] Ohno, S., Toprasertpong, K., Takagi, S., Takenaka, M.: Demonstration of classification task using optical neural network based on Si micro-ring resonator crossbar array. In: 2020 European Conference on Optical Communications (ECOC). IEEE, 1–4 (2020)
[30] [30] Rosenblueth, A., Wiener, N., Bigelow, J.: Behavior, purpose and teleology. Philos. Sci. 10(1), 18–24 (1943)
[31] [31] Cover, T.M., Thomas, J.A.: Elements of Information Theory. New Jersey: Wiley-Interscience (2006)
[32] [32] Collier, J.: Information originates in symmetry breaking. Symmetry Cult. Sci. 7(3), 247–256 (1996)
[33] [33] Muller, S.: Asymmetry: the Foundation of Information. Berlin: Springer (2007)
[34] [34] Roldán, é., Martínez, I.A., Parrondo, J.M.R., Petrov, D.: Universal features in the energetics of symmetry breaking. Nat. Phys. 10(6), 457–461 (2014)
[35] [35] Wong, H.S., Raoux, S., Kim, S., Liang, J., Reifenberg, J., Rajendran, B., Asheghi, M., Goodson, K. E.: Phase change memory. Proceedings of the Institute of Radio Engineers 98(12): 2201–2227 (2010)
[36] [36] Wang, Q., Rogers, E.T.F., Gholipour, B., Wang, C.M., Yuan, G., Teng, J., Zheludev, N.I.: Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photonics 10(1), 60–65 (2016)
[37] [37] John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58(23), 2486–2489 (1987)
[38] [38] Tada, K., Nakano, Y.: Semiconductor photonic integrated devices. Electron. Comm. Jpn. Pt. II 77(11), 99–112 (1994)
[39] [39] Gnauck, A.H., Koren, U., Koch, T.L., Choa, F.S., Raybon, G., Bums, C.A., Eisenstein, G.: Four-channel WDM transmission experiment using a photonic-integrated-circuit transmitter. In: Opt. Fiber Comm. Conf. IEEE, Paper PD26 (1990)
[40] [40] Goodman, J.W.: International Trends in Optics. Cambridge: Academic Press (1991)
[41] [41] Bar-Chaim, N., Margalit, S., Yariv, A., Ury, I.: GaAs integrated optoelectronics. IEEE Trans. Electron Devices 29(9), 1372–1381 (1982)
[42] [42] Matsueda, H., Tanaka, T.P., Nakano, H.: An optoelectronic integrated device including a laser and its driving circuit. Proceedings of Inst. Elec. Eng. 131(5): 299–303 (1984)
[43] [43] Heidel, N.D., Usechak, N.G., Dohrman, C.L., Conway, J.A.: A review of electronic-photonic heterogeneous integration at DARPA. IEEE J. Sel. Top. Quantum Electron. 22(6), 482–490 (2016)
[44] [44] Razavi, B.R.F.: Microelectronics. Hoboken: Prentice Hall Press (2011)
[45] [45] Yao, X.S., Maleki, L.: Converting light into spectrally pure microwave oscillation. Opt. Lett. 21(7), 483–485 (1996)
[46] [46] Ristic, S., Bhardwaj, A., Rodwell, M.J., Coldren, L.A., Johansson, L.A.: An optical phase-locked loop photonic integrated circuit. J. Lightwave Technol. 28(4), 526–538 (2010)
[47] [47] Sharma, J., Ahasan, S., Phare, C.T., Lipson, M., Krishnaswamy, H.: Continuous-time electro-optic PLL with decimated optical delay/loss and spur cancellation for LIDAR. In: Proceedings of Conf. Lasers Electro Opt. IEEE, 1–2 (2018)
[48] [48] Tan, M., Ye, K.X., Ming, D., Wang, Y.H., Wang, Z.C., Jin, L., Feng, J.B.: Towards electronic-photonic-converged thermo-optic feedback tuning. J. Semicond. 42(2), 023104 (2021)
[49] [49] Gatdula, R., Kim, K., Melikyan, A., Chen, Y.K., Dong, P.: Simultaneous four-channel thermal adaptation of polarization insensitive silicon photonics WDM receiver. Opt. Express 25(22), 27119–27126 (2017)
[50] [50] Zhu, Q., Qiu, C., He, Y., Zhang, Y., Su, Y.: Self-homodyne wavelength locking of a silicon microring resonator. Opt. Express 27(25), 36625–36636 (2019)
[51] [51] Maarten, H., Ziyi, Z., Keren, B.: Automated tuning and channel selection for cascaded micro-ring resonators. In: Proceedings of SPIE. SPIE, vol. 11308 (2020)
[52] [52] Agarwal, S., Ingels, M., Rakowski, M., Pantouvaki, M., Steyaert, M., Absil, P., Van Campenhout, J.: Wavelength locking of a Si ring modulator using an integrated drop-port OMA monitoring circuit. In: 2015 IEEE Asian Solid-State Circuits Conference (A-SSCC). IEEE, 1–4 (2015)
[53] [53] Dong, P., Gatdula, R., Kim, K., Sinsky, J.H., Melikyan, A., Chen, Y.K., de Valicourt, G., Lee, J.: Simultaneous wavelength locking of microring modulator array with a single monitoring signal. Opt. Express 25(14), 16040–16046 (2017)
[54] [54] AlTaha, M.W., Jayatilleka, H., Lu, Z., Chung, J.F., Celo, D., Goodwill, D., Bernier, E., Mirabbasi, S., Chrostowski, L., Shekhar, S.: Monitoring and automatic tuning and stabilization of a 2×2 MZI optical switch for large-scale WDM switch networks. Opt. Express 27(17), 24747–24764 (2019)
[55] [55] Saeedi, S., Emami, A.: Silicon-photonic PTAT temperature sensor for micro-ring resonator thermal stabilization. Opt. Express 23(17), 21875–21883 (2015)
[56] [56] Yang, S., Zhu, X., Zhang, Y., Li, Y., Baehr-Jones, T., Hochberg, M., Bergman, K.: Thermal stabilization of a micro-ring resonator using bandgap temperature sensor. In: 2015 IEEE Optical Interconnects Conference (OI). IEEE, 44–45 (2015)
[57] [57] Kim, M., Kim, M.H., Jo, Y., Kim, H., Lischke, S., Mai, C., Zimmermann, L., Choi, W.: A fully integrated 25 Gb/s Si ring modulator transmitter with a temperature controller. In: Proceedings of Opt. Fiber Commun. Conf. (OFC). IEEE, p.T3H.7 (2020)
[58] [58] Jayatilleka, H., Murray, K., Guillén-Torres, M.á., Caverley, M., Hu, R., Jaeger, N.A., Chrostowski, L., Shekhar, S.: Wavelength tuning and stabilization of microring-based filters using silicon in-resonator photoconductive heaters. Opt. Express 23(19), 25084–25097 (2015)
[59] [59] Jayatilleka, H., Shoman, H., Boeck, R., Jaeger, N.A.F., Chrostowski, L., Shekhar, S.: Automatic configuration and wavelength locking of coupled silicon ring resonators. J. Lightwave Technol. 36(2), 210–218 (2018)
[60] [60] Jayatilleka, H., Shoman, H., Chrostowski, L., Shekhar, S.: Photoconductive heaters enable control of large-scale silicon photonic ring resonator circuits. Optica 6(1), 84 (2019)
[61] [61] Morichetti, F., Grillanda, S., Carminati, M., Ferrari, G., Sampietro, M., Strain, M.J., Sorel, M., Melloni, A.: Non-invasive onchip light observation by contactless waveguide conductivity monitoring. IEEE J. Sel. Top. Quantum Electron. 20(4), 292–301 (2014)
[62] [62] Zanetto, F., Grimaldi, V., Moralis-Pegios, M., Pitris, S., Fotiadis, K., Alexoudi, T., Guglielmi, E., Aguiar, D., De Heyn, P., Ban, Y., Van Campenhout, J., Pleros, N., Ferrari, G., Sampietro, M., Melloni, A.: WDM-based silicon photonic multi-socket interconnect architecture with automated wavelength and thermal drift compensation. J. Lightwave Technol. 38(21), 6000–6006 (2020)
[63] [63] Grillanda, S., Carminati, M., Morichetti, F., Ciccarella, P., Annoni, A., Ferrari, G., Strain, M., Sorel, M., Sampietro, M., Melloni, A.: Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics. Optica 1(3), 129–136 (2014)
[64] [64] Padmaraju, K., Logan, D.F., Shiraishi, T., Ackert, J.J., Knights, A.P., Bergman, K.: Wavelength locking and thermally stabilizing micro-ring resonators using dithering signals. J. Lightwave Technol. 32(3), 505–512 (2014)
[65] [65] Li, C., Bai, R., Shafik, A., Tabasy, E.Z., Wang, B., Tang, G., Ma, C., Chen, C.H., Peng, Z., Fiorentino, M., Beausoleil, R.G., Chiang, P., Palermo, S.: Silicon photonic transceiver circuits with micro-ring resonator bias-based wavelength stabilization in 65 nm CMOS. IEEE J. Solid-State Circuits 49(6), 1419–1436 (2014)
[66] [66] Li, H., Ding, R., Baehr-Jones, T., Fiorentino, M., Hochberg, M., Palermo, S., Chiang, P.Y., Xuan, Z., Titriku, A., Li, C., Yu, K., Wang, B., Shafik, A., Qi, N., Liu, Y.A.: 25 Gb/s, 4.4 V-swing, AC-coupled ring modulator-based WDM transmitter with wavelength stabilization in 65 nm CMOS. IEEE J. Solid-State Circuits. 50(12), 3145–3159 (2015)
[67] [67] Yu, K., Chen, C.H., Li, C., Li, H., Titriku, A., Wang, B., Shafik, A., Wang, Z., Fiorentino, M., Chiang, P., Palermo, S.: 25 Gb/s hybrid-integrated silicon photonic receiver with micro-ring w.avelength stabilization. In: Proceedings of Opt. Fiber Commun. Conf. IEEE, Paper W3A–6 (2015)
[68] [68] Annoni, A., Guglielmi, E., Carminati, M., Grillanda, S., Ciccarella, P., Ferrari, G., Sorel, M., Strain, M.J., Sampietro, M., Melloni, A., Morichetti, F.: Automated routing and control of silicon photonic switch fabrics. IEEE J. Sel. Top. Quantum Electron. 22(6), 169–176 (2016)
[69] [69] Mak, J.C.C., Sacher, W.D., Xue, T., Mikkelsen, J.C., Yong, Z., Poon, J.K.S.: Automatic resonance alignment of high-order micro-ring filters. IEEE J. Quantum Electron. 51(11), 1–11 (2015)
[70] [70] Milanizadeh, M., Aguiar, D., Melloni, A., Morichetti, F.: Canceling thermal cross-talk effects in photonic integrated circuits. J. Lightwave Technol. 37(4), 1325–1332 (2019)
[71] [71] Ming, D., Wang, Z., Wang, Y., Tan, M.: First demonstration of closed-loop PWM wavelength locking of a micro-ring resonator in a monolithic photonic-BiCMOS platform. In: IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA). IEEE, 163–164 (2020)
[72] [72] Padmaraju, K., Logan, D.F., Zhu, X., Ackert, J.J., Knights, A.P., Bergman, K.: Integrated thermal stabilization of a microring modulator. Opt. Express 21(12), 14342–14350 (2013)
[73] [73] Sun, C., Wade, M., Georgas, M., Lin, S., Alloatti, L., Moss, B., Kumar, R., Atabaki, A.H., Pavanello, F., Shainline, J.M., Orcutt, J.S., Ram, R.J., Popovic, M., Stojanovic, V.A.: 45 nm CMOSSOI monolithic photonics platform with bit-statistics-based resonant micro-ring thermal tuning. IEEE J. Solid-State Circuits 51(4), 893–907 (2016)
[74] [74] Li, H., Balamurugan, G., Kim, T., Sakib, M.N., Kumar, R., Rong, H., Jaussi, J., Casper, B.A.: 3-D-integrated silicon photonic micro-ring-based 112-Gb/s PAM-4 transmitter with nonlinear equalization and thermal control. IEEE J. Solid-State Circuits 56(1), 19–29 (2021)
[75] [75] Amberg, P., Chang, E., Liu, F., Lexau, J., Zheng, X., Li, G., Shubin, I., Cunningham, J.E., Krishnamoorthy, A.V., Ho, R.: A sub-400 fJ/bit thermal tuner for optical resonant ring modulators in 40 nm CMOS. In: 2012 IEEE Asian Solid State Circuits Conference (A-SSCC). IEEE, 29–32 (2012)
[76] [76] Feng, Z., Fu, S., Tang, M., Shen, P., Liu, D.: Investigation on agile bias control technique for arbitrary-point locking in lithium niobate Mach–Zehnder modulators. Acta Optica Sinica 32(12), 73–78 (2012)
[77] [77] Svarny, J.: Analysis of quadrature bias-point drift of Mach–Zehnder electro-optic modulator. In: 12th Biennial Baltic Electronics Conference. IEEE, 231–234 (2010)
[78] [78] Wang, L.L., Kowalcyzk, T.: A versatile bias control technique for any-point locking in lithium niobate Mach–Zehnder modulators. J. Lightwave Technol. 28(11), 1703–1706 (2010)
[79] [79] Kim, M.H., Jung, H.Y., Zimmermann, L., Choi, W.Y.: An integrated Mach–Zehnder modulator bias controller based on eye-amplitude monitoring. In: SPIE OPTO. SPIE (2016)
[80] [80] Kim, M.H., Jung, H.Y., Zimmermann, L., Choi, W.Y.: An integrated Mach–Zehnder modulator bias controller based on eye-amplitude monitoring. In: Proceedings of. SPIE. SPIE, vol. 9751 (2016)
[81] [81] Li, X., Deng, L., Chen, X., Song, H., Liu, Y., Cheng, M., Fu, S., Tang, M., Zhang, M., Liu, D.: Arbitrary bias point control technique for optical IQ modulator based on dither-correlation detection. J. Lightwave Technol. 36(18), 3824–3836 (2018)
[82] [82] Chen, H., Zhang, B., Hu, L., Luo, Y., Hu, Y., Xiao, X., Liang, X., Li, F., Gan, L.: Thermo-optic-based phase-shifter power dither for silicon IQ optical modulator bias-control technology. Opt. Express 27(15), 21546–21564 (2019)
[83] [83] Caspers, J.N., Yun, W., Lukas, C., Mo, M.: Active polarization independent coupling to silicon photonics circuit. In: Proceedings of SPIE. SPIE, vol. 9133 (2014)
[84] [84] Velha, P., Sorianello, V., Preite, M.V., De Angelis, G., Cassese, T., Bianchi, A., Testa, F., Romagnoli, M.: Wide-band polarization controller for Si photonic integrated circuits. Opt. Lett. 41(24), 5656–5659 (2016)
[85] [85] Ma, M., Shoman, H., Tang, K., Shekhar, S., Jaeger, N.A.F., Chrostowski, L.: Automated control algorithms for silicon photonic polarization receiver. Opt. Express 28(2), 1885–1896 (2020)
[86] [86] Ma, M., Shoman, H., Shekhar, S., Jaeger, N.A.F., Chrostowski, L.: Automated adaptation and stabilization of a tunable WDM polarization-independent receiver on active silicon photonic platform. IEEE Photonics J. 12(4), 1–11 (2020)
[87] [87] Wang, X., Liao, R., Zhao, C., Wu, H., Tang, M.: Mach–Zehnder interferometer based endlessly adaptive polarization controller on silicon-photonic platform. In: Proceedings of Opt. Fiber Commun. Conf. IEEE, 1–3 (2021)
[88] [88] Annoni, A., Guglielmi, E., Carminati, M., Ferrari, G., Sampietro, M., Miller, D.A., Melloni, A., Morichetti, F.: Unscrambling light-automatically undoing strong mixing between modes. Light Sci. Appl. 6(12), e17110 (2017)
[89] [89] Miller, D.A.B.: Self-configuring universal linear optical component. Photon. Res. 1(1), 1–15 (2013)
[90] [90] Choutagunta, K., Roberts, I., Miller, D.A.B., Kahn, J.M.: Adapting Mach–Zehnder mesh equalizers in direct-detection mode-division-multiplexed links. J. Lightwave Technol. 38(4), 723–735 (2020)
[91] [91] Yao, X.S., Maleki, L., Eliyahu, D.: Progress in the opto-electronic oscillator - a ten year anniversary review. IEEE MTT-S International Microwave Symposium Digest 1(1): 287–290 (2004)
[92] [92] Yao, X.S., Maleki, L.: Optoelectronic oscillator for photonic systems. IEEE J. Quantum Electron. 32(7), 1141–1149 (1996)
[93] [93] Yao, X.S., Maleki, L., Yu, J., Lutes, G., Meirong, T.: Dual-loop opto-electronic oscillator. In: Proceedings of the IEEE International Frequency Control Symposium (Cat. No.98CH36165). IEEE, 545–549 (1998)
[94] [94] Matsko, A.B., Maleki, L., Savchenkov, A.A., Ilchenko, V.S.: Whispering gallery mode based optoelectronic microwave oscillator. J. Mod. Opt. 50(15–17), 2523–2542 (2003)
[95] [95] Eliyahu, D., Maleki, L.: Tunable, ultra-low phase noise YIG based opto-electronic oscillator. IEEE MTT-S International Microwave Symposium Digest 3(3): 2185–2187 (2003)
[96] [96] Zhang, W., Yao, J.: A silicon photonic integrated frequencytunable optoelectronic oscillator. In: 2017 International Topical Meeting on Microwave Photonics (MWP). IEEE, 1–4 (2017)
[97] [97] Tang, J., Hao, T., Li, W., Domenech, D., Banos, R., Munoz, P., Zhu, N., Capmany, J., Li, M.: Integrated optoelectronic oscillator. Opt. Express 26(9), 12257–12265 (2018)
[98] [98] Satyan, N., Vasilyev, A., Rakuljic, G., Leyva, V., Yariv, A.: Precise control of broadband frequency chirps using optoelectronic feedback. Opt. Express 17(18), 15991–15999 (2009)
[99] [99] Behroozpour, B., Sandborn, P.A.M., Quack, N., Seok, T.J., Matsui, Y., Wu, M.C., Boser, B.E.: Electronic-photonic integrated circuit for 3D microimaging. IEEE J. Solid-State Circuits 52(1), 161–172 (2017)
[100] [100] Binaie, A., Ahasan, S., Krishnaswamy, H.A.: 65 nm CMOS continuous-time electro-optic PLL (CT-EOPLL) with image and harmonic spur suppression for LIDAR. In: IEEE Radio Frequency Integrated Circuits Symposium (RFIC). IEEE, 103–106 (2019)
[101] [101] Ahasan, S., Binaie, A., Phare, C.T., Lipson, M., Krishnaswamy, H.: A compact, low loss integrated continuous-time electro optic-PLL with maximum range of > 3.3 m. In: Conference on Lasers and Electro-Optics. OSA, p.SM1N.6 (2019)
[102] [102] Enloe, L.H., Rodda, J.L.: Laser phase-locked loop. Proc. IEEE 53(2), 165–166 (1965)
[103] [103] Hirokawa, T., Pinna, S., Hosseinzadeh, N., Maharry, A., Andrade, H., Liu, J., Meissner, T., Misak, S., Movaghar, G., Valenzuela, L.A., Xia, Y., Bhat, S., Gambini, F., Klamkin, J., Saleh, A.A.M., Coldren, L., Buckwalter, J.F., Schow, C.L.: Analog coherent detection for energy efficient intra-data center links at 200 Gbps Per Wavelength. J. Lightwave Technol. 39(2), 520–531 (2021)
[104] [104] Drever, R.W.P., Hall, J.L., Kowalski, F.V., Hough, J., Ford, G.M., Munley, A.J., Ward, H.: Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B 31(2), 97–105 (1983)
[105] [105] Mabuchi, H.: Coherent feedback control in quantum circuits and networks. In: AIAA Scitech 2019 Forum. AIAA (2019)
[106] [106] Spiller, T.P.: Superconducting circuits for quantum computing. In: Scalable Quantum Computers. New York: John Wiley & Sons, 305–324 (2000)
[107] [107] Moody, G., Sorger, V.J., Juodawlkis, P.W., Loh, W., Camacho, R.M.: Roadmap on integrated quantum photonics. J. Phys. Photonics 4(1), 012501 (2022)
Get Citation
Copy Citation Text
Min Tan, Yuhang Wang, Ken Xingze Wang, Yuan Yu, Xinliang Zhang. Circuit-level convergence of electronics and photonics: basic concepts and recent advances[J]. Frontiers of Optoelectronics, 2022, 15(2): 12200
Category: REVIEW ARTICLE
Received: Jan. 21, 2022
Accepted: Feb. 14, 2022
Published Online: Jan. 18, 2023
The Author Email: Min Tan (mtan@hust.edu.cn)